[698] | 1 | include "ASM/BitVector.ma". |
---|
| 2 | include "ASM/Util.ma". |
---|
[475] | 3 | |
---|
[1646] | 4 | definition addr16_of_addr11: Word → Word11 → Word ≝ |
---|
| 5 | λpc: Word. |
---|
| 6 | λa: Word11. |
---|
[2032] | 7 | let 〈pc_upper, ignore〉 ≝ vsplit … 8 8 pc in |
---|
| 8 | let 〈n1, n2〉 ≝ vsplit … 4 4 pc_upper in |
---|
| 9 | let 〈b123, b〉 ≝ vsplit … 3 8 a in |
---|
[1646] | 10 | let b1 ≝ get_index_v … b123 0 ? in |
---|
| 11 | let b2 ≝ get_index_v … b123 1 ? in |
---|
| 12 | let b3 ≝ get_index_v … b123 2 ? in |
---|
| 13 | let p5 ≝ get_index_v … n2 0 ? in |
---|
| 14 | (n1 @@ [[ p5; b1; b2; b3 ]]) @@ b. |
---|
| 15 | // |
---|
| 16 | qed. |
---|
| 17 | |
---|
[475] | 18 | definition nat_of_bool ≝ |
---|
| 19 | λb: bool. |
---|
| 20 | match b with |
---|
| 21 | [ false ⇒ O |
---|
| 22 | | true ⇒ S O |
---|
| 23 | ]. |
---|
[697] | 24 | |
---|
| 25 | definition carry_of : bool → bool → bool → bool ≝ |
---|
| 26 | λa,b,c. match a with [ false ⇒ b ∧ c | true ⇒ b ∨ c ]. |
---|
| 27 | |
---|
| 28 | definition add_with_carries : ∀n:nat. BitVector n → BitVector n → bool → |
---|
| 29 | BitVector n × (BitVector n) ≝ |
---|
| 30 | λn,x,y,init_carry. |
---|
| 31 | fold_right2_i ??? |
---|
| 32 | (λn,b,c,r. |
---|
| 33 | let 〈lower_bits, carries〉 ≝ r in |
---|
| 34 | let last_carry ≝ match carries with [ VEmpty ⇒ init_carry | VCons _ cy _ ⇒ cy ] in |
---|
[1485] | 35 | (* Next if-then-else just to avoid a quadratic blow-up of the whd of an application |
---|
| 36 | of add_with_carries *) |
---|
| 37 | if last_carry then |
---|
[1599] | 38 | let bit ≝ xorb (xorb b c) true in |
---|
[1485] | 39 | let carry ≝ carry_of b c true in |
---|
[697] | 40 | 〈bit:::lower_bits, carry:::carries〉 |
---|
[1485] | 41 | else |
---|
[1599] | 42 | let bit ≝ xorb (xorb b c) false in |
---|
[1485] | 43 | let carry ≝ carry_of b c false in |
---|
| 44 | 〈bit:::lower_bits, carry:::carries〉 |
---|
[697] | 45 | ) |
---|
| 46 | 〈[[ ]], [[ ]]〉 n x y. |
---|
| 47 | |
---|
| 48 | (* Essentially the only difference for subtraction. *) |
---|
| 49 | definition borrow_of : bool → bool → bool → bool ≝ |
---|
| 50 | λa,b,c. match a with [ false ⇒ b ∨ c | true ⇒ b ∧ c ]. |
---|
| 51 | |
---|
| 52 | definition sub_with_borrows : ∀n:nat. BitVector n → BitVector n → bool → |
---|
| 53 | BitVector n × (BitVector n) ≝ |
---|
| 54 | λn,x,y,init_borrow. |
---|
| 55 | fold_right2_i ??? |
---|
| 56 | (λn,b,c,r. |
---|
| 57 | let 〈lower_bits, borrows〉 ≝ r in |
---|
| 58 | let last_borrow ≝ match borrows with [ VEmpty ⇒ init_borrow | VCons _ bw _ ⇒ bw ] in |
---|
[1599] | 59 | let bit ≝ xorb (xorb b c) last_borrow in |
---|
[697] | 60 | let borrow ≝ borrow_of b c last_borrow in |
---|
| 61 | 〈bit:::lower_bits, borrow:::borrows〉 |
---|
| 62 | ) |
---|
| 63 | 〈[[ ]], [[ ]]〉 n x y. |
---|
[475] | 64 | |
---|
| 65 | definition add_n_with_carry: |
---|
[697] | 66 | ∀n: nat. ∀b, c: BitVector n. ∀carry: bool. n ≥ 5 → |
---|
| 67 | (BitVector n) × (BitVector 3) ≝ |
---|
[475] | 68 | λn: nat. |
---|
| 69 | λb: BitVector n. |
---|
| 70 | λc: BitVector n. |
---|
| 71 | λcarry: bool. |
---|
[697] | 72 | λpf:n ≥ 5. |
---|
| 73 | |
---|
| 74 | let 〈result, carries〉 ≝ add_with_carries n b c carry in |
---|
| 75 | let cy_flag ≝ get_index_v ?? carries 0 ? in |
---|
[1599] | 76 | let ov_flag ≝ xorb cy_flag (get_index_v ?? carries 1 ?) in |
---|
[697] | 77 | let ac_flag ≝ get_index_v ?? carries 4 ? in (* I'd prefer n/2, but this is easier *) |
---|
| 78 | 〈result, [[ cy_flag; ac_flag; ov_flag ]]〉. |
---|
| 79 | // @(transitive_le … pf) /2/ |
---|
| 80 | qed. |
---|
[475] | 81 | |
---|
[697] | 82 | definition sub_n_with_carry: ∀n: nat. ∀b,c: BitVector n. ∀carry: bool. n ≥ 5 → |
---|
| 83 | (BitVector n) × (BitVector 3) ≝ |
---|
[475] | 84 | λn: nat. |
---|
| 85 | λb: BitVector n. |
---|
| 86 | λc: BitVector n. |
---|
| 87 | λcarry: bool. |
---|
[697] | 88 | λpf:n ≥ 5. |
---|
| 89 | |
---|
| 90 | let 〈result, carries〉 ≝ sub_with_borrows n b c carry in |
---|
| 91 | let cy_flag ≝ get_index_v ?? carries 0 ? in |
---|
[1599] | 92 | let ov_flag ≝ xorb cy_flag (get_index_v ?? carries 1 ?) in |
---|
[697] | 93 | let ac_flag ≝ get_index_v ?? carries 4 ? in (* I'd prefer n/2, but this is easier *) |
---|
| 94 | 〈result, [[ cy_flag; ac_flag; ov_flag ]]〉. |
---|
| 95 | // @(transitive_le … pf) /2/ |
---|
| 96 | qed. |
---|
| 97 | |
---|
[712] | 98 | definition add_8_with_carry ≝ |
---|
| 99 | λb, c: BitVector 8. |
---|
| 100 | λcarry: bool. |
---|
| 101 | add_n_with_carry 8 b c carry ?. |
---|
| 102 | @le_S @le_S @le_S @le_n (* ugly: fix using tacticals *) |
---|
| 103 | qed. |
---|
[475] | 104 | |
---|
[712] | 105 | definition add_16_with_carry ≝ |
---|
| 106 | λb, c: BitVector 16. |
---|
| 107 | λcarry: bool. |
---|
| 108 | add_n_with_carry 16 b c carry ?. |
---|
| 109 | @le_S @le_S @le_S @le_S @le_S @le_S @le_S @le_S @le_S |
---|
| 110 | @le_S @le_S @le_n (* ugly: fix using tacticals *) |
---|
| 111 | qed. |
---|
| 112 | |
---|
[949] | 113 | (* dpm: needed for assembly proof *) |
---|
| 114 | definition sub_7_with_carry ≝ |
---|
| 115 | λb, c: BitVector 7. |
---|
| 116 | λcarry: bool. |
---|
| 117 | sub_n_with_carry 7 b c carry ?. |
---|
| 118 | @le_S @le_S @le_n |
---|
| 119 | qed. |
---|
| 120 | |
---|
[712] | 121 | definition sub_8_with_carry ≝ |
---|
| 122 | λb, c: BitVector 8. |
---|
| 123 | λcarry: bool. |
---|
| 124 | sub_n_with_carry 8 b c carry ?. |
---|
| 125 | @le_S @le_S @le_S @le_n (* ugly: fix using tacticals *) |
---|
| 126 | qed. |
---|
| 127 | |
---|
| 128 | definition sub_16_with_carry ≝ |
---|
| 129 | λb, c: BitVector 16. |
---|
| 130 | λcarry: bool. |
---|
| 131 | sub_n_with_carry 16 b c carry ?. |
---|
| 132 | @le_S @le_S @le_S @le_S @le_S @le_S @le_S @le_S @le_S |
---|
| 133 | @le_S @le_S @le_n (* ugly: fix using tacticals *) |
---|
| 134 | qed. |
---|
| 135 | |
---|
[475] | 136 | definition increment ≝ |
---|
| 137 | λn: nat. |
---|
| 138 | λb: BitVector n. |
---|
[697] | 139 | \fst (add_with_carries n b (zero n) true). |
---|
[475] | 140 | |
---|
| 141 | definition decrement ≝ |
---|
| 142 | λn: nat. |
---|
| 143 | λb: BitVector n. |
---|
[697] | 144 | \fst (sub_with_borrows n b (zero n) true). |
---|
[724] | 145 | |
---|
| 146 | let rec bitvector_of_nat_aux (n,m:nat) (v:BitVector n) on m : BitVector n ≝ |
---|
| 147 | match m with |
---|
| 148 | [ O ⇒ v |
---|
| 149 | | S m' ⇒ bitvector_of_nat_aux n m' (increment n v) |
---|
| 150 | ]. |
---|
| 151 | |
---|
| 152 | definition bitvector_of_nat : ∀n:nat. nat → BitVector n ≝ |
---|
| 153 | λn,m. bitvector_of_nat_aux n m (zero n). |
---|
| 154 | |
---|
| 155 | let rec nat_of_bitvector_aux (n,m:nat) (v:BitVector n) on v : nat ≝ |
---|
| 156 | match v with |
---|
| 157 | [ VEmpty ⇒ m |
---|
| 158 | | VCons n' hd tl ⇒ nat_of_bitvector_aux n' (if hd then 2*m +1 else 2*m) tl |
---|
| 159 | ]. |
---|
| 160 | |
---|
| 161 | definition nat_of_bitvector : ∀n:nat. BitVector n → nat ≝ |
---|
| 162 | λn,v. nat_of_bitvector_aux n O v. |
---|
[1870] | 163 | |
---|
| 164 | lemma bitvector_of_nat_ok: |
---|
| 165 | ∀n,x,y:ℕ.x < 2^n → y < 2^n → eq_bv n (bitvector_of_nat n x) (bitvector_of_nat n y) → x = y. |
---|
| 166 | #n elim n -n |
---|
| 167 | [ #x #y #Hx #Hy #Heq <(le_n_O_to_eq ? (le_S_S_to_le ?? Hx)) <(le_n_O_to_eq ? (le_S_S_to_le ?? Hy)) @refl |
---|
| 168 | | #n #Hind #x #y #Hx #Hy #Heq cases daemon (* XXX *) |
---|
| 169 | ] |
---|
| 170 | qed. |
---|
| 171 | |
---|
| 172 | lemma bitvector_of_nat_abs: |
---|
| 173 | ∀n,x,y:ℕ.x < 2^n → y < 2^n → x ≠ y → ¬eq_bv n (bitvector_of_nat n x) (bitvector_of_nat n y). |
---|
| 174 | #n #x #y #Hx #Hy #Heq @notb_elim |
---|
| 175 | lapply (refl ? (eq_bv ? (bitvector_of_nat n x) (bitvector_of_nat n y))) |
---|
| 176 | cases (eq_bv ? (bitvector_of_nat n x) (bitvector_of_nat n y)) in ⊢ (???% → %); |
---|
| 177 | [ #H @⊥ @(absurd ?? Heq) @(bitvector_of_nat_ok n x y Hx Hy) >H / by I/ |
---|
| 178 | | #H / by I/ |
---|
| 179 | ] |
---|
| 180 | qed. |
---|
| 181 | |
---|
[2149] | 182 | axiom bitvector_of_nat_exp_zero: ∀n.bitvector_of_nat n (2^n) = zero n. |
---|
| 183 | |
---|
[1928] | 184 | axiom nat_of_bitvector_bitvector_of_nat_inverse: |
---|
| 185 | ∀n: nat. |
---|
| 186 | ∀b: nat. |
---|
| 187 | b < 2^n → nat_of_bitvector n (bitvector_of_nat n b) = b. |
---|
| 188 | |
---|
| 189 | axiom bitvector_of_nat_inverse_nat_of_bitvector: |
---|
| 190 | ∀n: nat. |
---|
| 191 | ∀b: BitVector n. |
---|
| 192 | bitvector_of_nat n (nat_of_bitvector n b) = b. |
---|
| 193 | |
---|
[2111] | 194 | axiom lt_nat_of_bitvector: ∀n.∀w. nat_of_bitvector n w < 2^n. |
---|
| 195 | |
---|
[2124] | 196 | axiom eq_bitvector_of_nat_to_eq: |
---|
| 197 | ∀n,n1,n2. |
---|
| 198 | n1 < 2^n → n2 < 2^n → |
---|
| 199 | bitvector_of_nat n n1 = bitvector_of_nat n n2 → n1=n2. |
---|
| 200 | |
---|
[1928] | 201 | lemma nat_of_bitvector_aux_injective: |
---|
| 202 | ∀n: nat. |
---|
| 203 | ∀l, r: BitVector n. |
---|
| 204 | ∀acc_l, acc_r: nat. |
---|
| 205 | nat_of_bitvector_aux n acc_l l = nat_of_bitvector_aux n acc_r r → |
---|
| 206 | acc_l = acc_r ∧ l ≃ r. |
---|
| 207 | #n #l |
---|
| 208 | elim l #r |
---|
| 209 | [1: |
---|
| 210 | #acc_l #acc_r normalize |
---|
| 211 | >(BitVector_O r) normalize /2/ |
---|
| 212 | |2: |
---|
| 213 | #hd #tl #inductive_hypothesis #r #acc_l #acc_r |
---|
| 214 | normalize normalize in inductive_hypothesis; |
---|
| 215 | cases (BitVector_Sn … r) |
---|
| 216 | #r_hd * #r_tl #r_refl destruct normalize |
---|
| 217 | cases hd cases r_hd normalize |
---|
| 218 | [1: |
---|
| 219 | #relevant |
---|
| 220 | cases (inductive_hypothesis … relevant) |
---|
| 221 | #acc_assm #tl_assm destruct % // |
---|
| 222 | lapply (injective_plus_l ? ? ? acc_assm) |
---|
| 223 | -acc_assm #acc_assm |
---|
| 224 | change with (2 * acc_l = 2 * acc_r) in acc_assm; |
---|
| 225 | lapply (injective_times_r ? ? ? ? acc_assm) /2/ |
---|
| 226 | |4: |
---|
| 227 | #relevant |
---|
| 228 | cases (inductive_hypothesis … relevant) |
---|
| 229 | #acc_assm #tl_assm destruct % // |
---|
| 230 | change with (2 * acc_l = 2 * acc_r) in acc_assm; |
---|
| 231 | lapply(injective_times_r ? ? ? ? acc_assm) /2/ |
---|
| 232 | |2: |
---|
| 233 | #relevant |
---|
| 234 | change with ((nat_of_bitvector_aux r (2 * acc_l + 1) tl) = |
---|
| 235 | (nat_of_bitvector_aux r (2 * acc_r) r_tl)) in relevant; |
---|
| 236 | cases (eqb_decidable … (2 * acc_l + 1) (2 * acc_r)) |
---|
| 237 | [1: |
---|
| 238 | #eqb_true_assm |
---|
| 239 | lapply (eqb_true_to_refl … eqb_true_assm) |
---|
| 240 | #refl_assm |
---|
| 241 | cases (two_times_n_plus_one_refl_two_times_n_to_False … refl_assm) |
---|
| 242 | |2: |
---|
| 243 | #eqb_false_assm |
---|
| 244 | lapply (eqb_false_to_not_refl … eqb_false_assm) |
---|
| 245 | #not_refl_assm cases not_refl_assm #absurd_assm |
---|
| 246 | cases (inductive_hypothesis … relevant) #absurd |
---|
| 247 | cases (absurd_assm absurd) |
---|
| 248 | ] |
---|
| 249 | |3: |
---|
| 250 | #relevant |
---|
| 251 | change with ((nat_of_bitvector_aux r (2 * acc_l) tl) = |
---|
| 252 | (nat_of_bitvector_aux r (2 * acc_r + 1) r_tl)) in relevant; |
---|
| 253 | cases (eqb_decidable … (2 * acc_l) (2 * acc_r + 1)) |
---|
| 254 | [1: |
---|
| 255 | #eqb_true_assm |
---|
| 256 | lapply (eqb_true_to_refl … eqb_true_assm) |
---|
| 257 | #refl_assm |
---|
| 258 | lapply (sym_eq ? (2 * acc_l) (2 * acc_r + 1) refl_assm) |
---|
| 259 | -refl_assm #refl_assm |
---|
| 260 | cases (two_times_n_plus_one_refl_two_times_n_to_False … refl_assm) |
---|
| 261 | |2: |
---|
| 262 | #eqb_false_assm |
---|
| 263 | lapply (eqb_false_to_not_refl … eqb_false_assm) |
---|
| 264 | #not_refl_assm cases not_refl_assm #absurd_assm |
---|
| 265 | cases (inductive_hypothesis … relevant) #absurd |
---|
| 266 | cases (absurd_assm absurd) |
---|
| 267 | ] |
---|
| 268 | ] |
---|
| 269 | ] |
---|
| 270 | qed. |
---|
| 271 | |
---|
| 272 | lemma nat_of_bitvector_destruct: |
---|
| 273 | ∀n: nat. |
---|
| 274 | ∀l_hd, r_hd: bool. |
---|
| 275 | ∀l_tl, r_tl: BitVector n. |
---|
| 276 | nat_of_bitvector (S n) (l_hd:::l_tl) = nat_of_bitvector (S n) (r_hd:::r_tl) → |
---|
| 277 | l_hd = r_hd ∧ nat_of_bitvector n l_tl = nat_of_bitvector n r_tl. |
---|
| 278 | #n #l_hd #r_hd #l_tl #r_tl |
---|
| 279 | normalize |
---|
| 280 | cases l_hd cases r_hd |
---|
| 281 | normalize |
---|
| 282 | [4: |
---|
| 283 | /2/ |
---|
| 284 | |1: |
---|
| 285 | #relevant |
---|
| 286 | cases (nat_of_bitvector_aux_injective … relevant) |
---|
| 287 | #_ #l_r_tl_refl destruct /2/ |
---|
| 288 | |2,3: |
---|
| 289 | #relevant |
---|
| 290 | cases (nat_of_bitvector_aux_injective … relevant) |
---|
| 291 | #absurd destruct(absurd) |
---|
| 292 | ] |
---|
| 293 | qed. |
---|
| 294 | |
---|
| 295 | lemma BitVector_cons_injective: |
---|
| 296 | ∀n: nat. |
---|
| 297 | ∀l_hd, r_hd: bool. |
---|
| 298 | ∀l_tl, r_tl: BitVector n. |
---|
| 299 | l_hd = r_hd → l_tl = r_tl → l_hd:::l_tl = r_hd:::r_tl. |
---|
| 300 | #l #l_hd #r_hd #l_tl #r_tl |
---|
| 301 | #l_refl #r_refl destruct % |
---|
| 302 | qed. |
---|
| 303 | |
---|
| 304 | lemma refl_nat_of_bitvector_to_refl: |
---|
| 305 | ∀n: nat. |
---|
| 306 | ∀l, r: BitVector n. |
---|
| 307 | nat_of_bitvector n l = nat_of_bitvector n r → l = r. |
---|
| 308 | #n |
---|
| 309 | elim n |
---|
| 310 | [1: |
---|
| 311 | #l #r |
---|
| 312 | >(BitVector_O l) |
---|
| 313 | >(BitVector_O r) |
---|
| 314 | #_ % |
---|
| 315 | |2: |
---|
| 316 | #n' #inductive_hypothesis #l #r |
---|
| 317 | lapply (BitVector_Sn ? l) #l_hypothesis |
---|
| 318 | lapply (BitVector_Sn ? r) #r_hypothesis |
---|
| 319 | cases l_hypothesis #l_hd #l_tail_hypothesis |
---|
| 320 | cases r_hypothesis #r_hd #r_tail_hypothesis |
---|
| 321 | cases l_tail_hypothesis #l_tl #l_hd_tl_refl |
---|
| 322 | cases r_tail_hypothesis #r_tl #r_hd_tl_refl |
---|
| 323 | destruct #cons_refl |
---|
| 324 | cases (nat_of_bitvector_destruct n' l_hd r_hd l_tl r_tl cons_refl) |
---|
| 325 | #hd_refl #tl_refl |
---|
| 326 | @BitVector_cons_injective try assumption |
---|
| 327 | @inductive_hypothesis assumption |
---|
| 328 | ] |
---|
| 329 | qed. |
---|
| 330 | |
---|
[475] | 331 | definition two_complement_negation ≝ |
---|
| 332 | λn: nat. |
---|
| 333 | λb: BitVector n. |
---|
| 334 | let new_b ≝ negation_bv n b in |
---|
| 335 | increment n new_b. |
---|
| 336 | |
---|
| 337 | definition addition_n ≝ |
---|
| 338 | λn: nat. |
---|
| 339 | λb, c: BitVector n. |
---|
[697] | 340 | let 〈res,flags〉 ≝ add_with_carries n b c false in |
---|
[475] | 341 | res. |
---|
| 342 | |
---|
| 343 | definition subtraction ≝ |
---|
| 344 | λn: nat. |
---|
| 345 | λb, c: BitVector n. |
---|
| 346 | addition_n n b (two_complement_negation n c). |
---|
[744] | 347 | |
---|
| 348 | let rec mult_aux (m,n:nat) (b:BitVector m) (c:BitVector (S n)) (acc:BitVector (S n)) on b : BitVector (S n) ≝ |
---|
| 349 | match b with |
---|
| 350 | [ VEmpty ⇒ acc |
---|
| 351 | | VCons m' hd tl ⇒ |
---|
| 352 | let acc' ≝ if hd then addition_n ? c acc else acc in |
---|
| 353 | mult_aux m' n tl (shift_right_1 ?? c false) acc' |
---|
| 354 | ]. |
---|
| 355 | |
---|
| 356 | definition multiplication : ∀n:nat. BitVector n → BitVector n → BitVector (n + n) ≝ |
---|
[475] | 357 | λn: nat. |
---|
[744] | 358 | match n return λn.BitVector n → BitVector n → BitVector (n + n) with |
---|
| 359 | [ O ⇒ λ_.λ_.[[ ]] |
---|
| 360 | | S m ⇒ |
---|
| 361 | λb, c : BitVector (S m). |
---|
| 362 | let c' ≝ pad (S m) (S m) c in |
---|
| 363 | mult_aux ?? b (shift_left ?? m c' false) (zero ?) |
---|
| 364 | ]. |
---|
| 365 | |
---|
[2177] | 366 | definition short_multiplication : ∀n:nat. BitVector n → BitVector n → BitVector n ≝ |
---|
| 367 | λn,x,y. (\snd (vsplit ??? (multiplication ? x y))). |
---|
| 368 | |
---|
[744] | 369 | (* Division: 001...000 divided by 000...010 |
---|
| 370 | Shift the divisor as far left as possible, |
---|
| 371 | 100...000 |
---|
| 372 | then try subtracting it at each |
---|
| 373 | bit position, shifting left as we go. |
---|
| 374 | 001...000 - 100...000 X ⇒ 0 |
---|
| 375 | 001...000 - 010...000 X ⇒ 0 |
---|
| 376 | 001...000 - 001...000 Y ⇒ 1 (use subtracted value as new quotient) |
---|
| 377 | ... |
---|
| 378 | Then pad out the remaining bits at the front |
---|
| 379 | 00..001... |
---|
| 380 | *) |
---|
| 381 | inductive fbs_diff : nat → Type[0] ≝ |
---|
| 382 | | fbs_diff' : ∀n,m. fbs_diff (S (n+m)). |
---|
| 383 | |
---|
| 384 | let rec first_bit_set (n:nat) (b:BitVector n) on b : option (fbs_diff n) ≝ |
---|
| 385 | match b return λn.λ_. option (fbs_diff n) with |
---|
| 386 | [ VEmpty ⇒ None ? |
---|
| 387 | | VCons m h t ⇒ |
---|
| 388 | if h then Some ? (fbs_diff' O m) |
---|
| 389 | else match first_bit_set m t with |
---|
| 390 | [ None ⇒ None ? |
---|
| 391 | | Some o ⇒ match o return λx.λ_. option (fbs_diff (S x)) with [ fbs_diff' x y ⇒ Some ? (fbs_diff' (S x) y) ] |
---|
| 392 | ] |
---|
| 393 | ]. |
---|
| 394 | |
---|
| 395 | let rec divmod_u_aux (n,m:nat) (q:BitVector (S n)) (d:BitVector (S n)) on m : BitVector m × (BitVector (S n)) ≝ |
---|
| 396 | match m with |
---|
| 397 | [ O ⇒ 〈[[ ]], q〉 |
---|
| 398 | | S m' ⇒ |
---|
| 399 | let 〈q',flags〉 ≝ add_with_carries ? q (two_complement_negation ? d) false in |
---|
| 400 | let bit ≝ head' … flags in |
---|
| 401 | let q'' ≝ if bit then q' else q in |
---|
| 402 | let 〈tl, md〉 ≝ divmod_u_aux n m' q'' (shift_right_1 ?? d false) in |
---|
| 403 | 〈bit:::tl, md〉 |
---|
| 404 | ]. |
---|
| 405 | |
---|
| 406 | definition divmod_u : ∀n:nat. BitVector (S n) → BitVector (S n) → option (BitVector (S n) × (BitVector (S n))) ≝ |
---|
[475] | 407 | λn: nat. |
---|
[744] | 408 | λb, c: BitVector (S n). |
---|
| 409 | |
---|
| 410 | match first_bit_set ? c with |
---|
| 411 | [ None ⇒ None ? |
---|
| 412 | | Some fbs' ⇒ |
---|
| 413 | match fbs' return λx.λ_.option (BitVector x × (BitVector (S n))) with [ fbs_diff' fbs m ⇒ |
---|
| 414 | let 〈d,m〉 ≝ (divmod_u_aux ? (S fbs) b (shift_left ?? fbs c false)) in |
---|
| 415 | Some ? 〈switch_bv_plus ??? (pad ?? d), m〉 |
---|
| 416 | ] |
---|
[475] | 417 | ]. |
---|
[744] | 418 | |
---|
| 419 | definition division_u : ∀n:nat. BitVector (S n) → BitVector (S n) → option (BitVector (S n)) ≝ |
---|
| 420 | λn,q,d. match divmod_u n q d with [ None ⇒ None ? | Some p ⇒ Some ? (\fst p) ]. |
---|
[475] | 421 | |
---|
[697] | 422 | definition division_s: ∀n. ∀b, c: BitVector n. option (BitVector n) ≝ |
---|
[475] | 423 | λn. |
---|
| 424 | match n with |
---|
| 425 | [ O ⇒ λb, c. None ? |
---|
| 426 | | S p ⇒ λb, c: BitVector (S p). |
---|
| 427 | let b_sign_bit ≝ get_index_v ? ? b O ? in |
---|
| 428 | let c_sign_bit ≝ get_index_v ? ? c O ? in |
---|
[744] | 429 | match b_sign_bit with |
---|
| 430 | [ true ⇒ |
---|
| 431 | let neg_b ≝ two_complement_negation ? b in |
---|
| 432 | match c_sign_bit with |
---|
[475] | 433 | [ true ⇒ |
---|
[744] | 434 | (* I was worrying slightly about -2^(n-1), whose negation can't |
---|
| 435 | be represented in an n bit signed number. However, it's |
---|
| 436 | negation comes out as 2^(n-1) as an n bit *unsigned* number, |
---|
| 437 | so it's fine. *) |
---|
| 438 | division_u ? neg_b (two_complement_negation ? c) |
---|
[475] | 439 | | false ⇒ |
---|
[744] | 440 | match division_u ? neg_b c with |
---|
| 441 | [ None ⇒ None ? |
---|
| 442 | | Some r ⇒ Some ? (two_complement_negation ? r) |
---|
| 443 | ] |
---|
[475] | 444 | ] |
---|
[744] | 445 | | false ⇒ |
---|
| 446 | match c_sign_bit with |
---|
| 447 | [ true ⇒ |
---|
| 448 | match division_u ? b (two_complement_negation ? c) with |
---|
| 449 | [ None ⇒ None ? |
---|
| 450 | | Some r ⇒ Some ? (two_complement_negation ? r) |
---|
| 451 | ] |
---|
| 452 | | false ⇒ division_u ? b c |
---|
| 453 | ] |
---|
[475] | 454 | ] |
---|
[744] | 455 | ]. |
---|
[475] | 456 | // |
---|
| 457 | qed. |
---|
| 458 | |
---|
[744] | 459 | definition modulus_u : ∀n:nat. BitVector (S n) → BitVector (S n) → option (BitVector (S n)) ≝ |
---|
| 460 | λn,q,d. match divmod_u n q d with [ None ⇒ None ? | Some p ⇒ Some ? (\snd p) ]. |
---|
[475] | 461 | |
---|
| 462 | definition modulus_s ≝ |
---|
| 463 | λn. |
---|
| 464 | λb, c: BitVector n. |
---|
| 465 | match division_s n b c with |
---|
| 466 | [ None ⇒ None ? |
---|
| 467 | | Some result ⇒ |
---|
[2032] | 468 | let 〈high_bits, low_bits〉 ≝ vsplit bool ? n (multiplication n result c) in |
---|
[475] | 469 | Some ? (subtraction n b low_bits) |
---|
| 470 | ]. |
---|
| 471 | |
---|
| 472 | definition lt_u ≝ |
---|
[697] | 473 | fold_right2_i ??? |
---|
| 474 | (λ_.λa,b,r. |
---|
| 475 | match a with |
---|
| 476 | [ true ⇒ b ∧ r |
---|
| 477 | | false ⇒ b ∨ r |
---|
| 478 | ]) |
---|
| 479 | false. |
---|
[475] | 480 | |
---|
| 481 | definition gt_u ≝ λn, b, c. lt_u n c b. |
---|
| 482 | |
---|
| 483 | definition lte_u ≝ λn, b, c. ¬(gt_u n b c). |
---|
| 484 | |
---|
| 485 | definition gte_u ≝ λn, b, c. ¬(lt_u n b c). |
---|
[697] | 486 | |
---|
[475] | 487 | definition lt_s ≝ |
---|
| 488 | λn. |
---|
| 489 | λb, c: BitVector n. |
---|
[697] | 490 | let 〈result, borrows〉 ≝ sub_with_borrows n b c false in |
---|
| 491 | match borrows with |
---|
| 492 | [ VEmpty ⇒ false |
---|
| 493 | | VCons _ bwn tl ⇒ |
---|
| 494 | match tl with |
---|
| 495 | [ VEmpty ⇒ false |
---|
| 496 | | VCons _ bwpn _ ⇒ |
---|
[1599] | 497 | if xorb bwn bwpn then |
---|
[697] | 498 | match result with [ VEmpty ⇒ false | VCons _ b7 _ ⇒ b7 ] |
---|
| 499 | else |
---|
| 500 | match result with [ VEmpty ⇒ false | VCons _ b7 _ ⇒ b7 ] |
---|
| 501 | ] |
---|
| 502 | ]. |
---|
| 503 | |
---|
[475] | 504 | definition gt_s ≝ λn,b,c. lt_s n c b. |
---|
| 505 | |
---|
| 506 | definition lte_s ≝ λn,b,c. ¬(gt_s n b c). |
---|
| 507 | |
---|
| 508 | definition gte_s ≝ λn. λb, c. ¬(lt_s n b c). |
---|
| 509 | |
---|
| 510 | alias symbol "greater_than_or_equal" (instance 1) = "nat greater than or equal prop". |
---|
| 511 | |
---|
[1207] | 512 | definition max_u ≝ λn,a,b. if lt_u n a b then b else a. |
---|
| 513 | definition min_u ≝ λn,a,b. if lt_u n a b then a else b. |
---|
| 514 | definition max_s ≝ λn,a,b. if lt_s n a b then b else a. |
---|
| 515 | definition min_s ≝ λn,a,b. if lt_s n a b then a else b. |
---|
| 516 | |
---|
[475] | 517 | definition bitvector_of_bool: |
---|
| 518 | ∀n: nat. ∀b: bool. BitVector (S n) ≝ |
---|
| 519 | λn: nat. |
---|
| 520 | λb: bool. |
---|
| 521 | (pad n 1 [[b]])⌈n + 1 ↦ S n⌉. |
---|
| 522 | // |
---|
| 523 | qed. |
---|
| 524 | |
---|
| 525 | definition full_add ≝ |
---|
| 526 | λn: nat. |
---|
| 527 | λb, c: BitVector n. |
---|
| 528 | λd: Bit. |
---|
| 529 | fold_right2_i ? ? ? ( |
---|
| 530 | λn. |
---|
| 531 | λb1, b2: bool. |
---|
| 532 | λd: Bit × (BitVector n). |
---|
| 533 | let 〈c1,r〉 ≝ d in |
---|
| 534 | 〈(b1 ∧ b2) ∨ (c1 ∧ (b1 ∨ b2)), |
---|
[1599] | 535 | (xorb (xorb b1 b2) c1) ::: r〉) |
---|
[475] | 536 | 〈d, [[ ]]〉 ? b c. |
---|
| 537 | |
---|
| 538 | definition half_add ≝ |
---|
| 539 | λn: nat. |
---|
| 540 | λb, c: BitVector n. |
---|
| 541 | full_add n b c false. |
---|
[961] | 542 | |
---|
[1946] | 543 | definition add ≝ |
---|
| 544 | λn: nat. |
---|
| 545 | λl, r: BitVector n. |
---|
| 546 | \snd (half_add n l r). |
---|
| 547 | |
---|
[2108] | 548 | lemma half_add_carry_Sn: |
---|
[1946] | 549 | ∀n: nat. |
---|
| 550 | ∀l: BitVector n. |
---|
[2108] | 551 | ∀hd: bool. |
---|
| 552 | \fst (half_add (S n) (hd:::l) (false:::(zero n))) = |
---|
| 553 | andb hd (\fst (half_add n l (zero n))). |
---|
| 554 | #n #l elim l |
---|
| 555 | [1: |
---|
| 556 | #hd normalize cases hd % |
---|
| 557 | |2: |
---|
| 558 | #n' #hd #tl #inductive_hypothesis #hd' |
---|
| 559 | whd in match half_add; normalize nodelta |
---|
| 560 | whd in match full_add; normalize nodelta |
---|
| 561 | normalize in ⊢ (??%%); cases hd' normalize |
---|
| 562 | @pair_elim #c1 #r #c1_r_refl cases c1 % |
---|
| 563 | ] |
---|
| 564 | qed. |
---|
| 565 | |
---|
| 566 | lemma half_add_zero_carry_false: |
---|
| 567 | ∀m: nat. |
---|
| 568 | ∀b: BitVector m. |
---|
| 569 | \fst (half_add m b (zero m)) = false. |
---|
| 570 | #m #b elim b try % |
---|
| 571 | #n #hd #tl #inductive_hypothesis |
---|
| 572 | change with (false:::(zero ?)) in match (zero ?); |
---|
| 573 | >half_add_carry_Sn >inductive_hypothesis cases hd % |
---|
| 574 | qed. |
---|
| 575 | |
---|
| 576 | axiom half_add_true_true_carry_true: |
---|
| 577 | ∀n: nat. |
---|
| 578 | ∀hd, hd': bool. |
---|
| 579 | ∀l, r: BitVector n. |
---|
| 580 | \fst (half_add (S n) (true:::l) (true:::r)) = true. |
---|
| 581 | |
---|
| 582 | lemma add_Sn_carry_add: |
---|
| 583 | ∀n: nat. |
---|
| 584 | ∀hd, hd': bool. |
---|
| 585 | ∀l, r: BitVector n. |
---|
| 586 | add (S n) (hd:::l) (hd':::r) = |
---|
| 587 | xorb (xorb hd hd') (\fst (half_add n l r)):::add n l r. |
---|
| 588 | #n #hd #hd' #l elim l |
---|
| 589 | [1: |
---|
| 590 | #r cases hd cases hd' |
---|
| 591 | >(BitVector_O … r) normalize % |
---|
| 592 | |2: |
---|
| 593 | #n' #hd'' #tl #inductive_hypothesis #r |
---|
| 594 | cases (BitVector_Sn … r) #hd''' * #tl' #r_refl destruct |
---|
| 595 | cases hd cases hd' cases hd'' cases hd''' |
---|
| 596 | whd in match (xorb ??); |
---|
| 597 | cases daemon |
---|
| 598 | ] |
---|
| 599 | qed. |
---|
| 600 | |
---|
| 601 | lemma add_zero: |
---|
| 602 | ∀n: nat. |
---|
| 603 | ∀l: BitVector n. |
---|
[1946] | 604 | l = add n l (zero …). |
---|
[2108] | 605 | #n #l elim l try % |
---|
| 606 | #n' #hd #tl #inductive_hypothesis |
---|
| 607 | change with (false:::zero ?) in match (zero ?); |
---|
| 608 | >add_Sn_carry_add >half_add_zero_carry_false |
---|
| 609 | cases hd <inductive_hypothesis % |
---|
| 610 | qed. |
---|
[1946] | 611 | |
---|
[2108] | 612 | axiom most_significant_bit_zero: |
---|
| 613 | ∀size, m: nat. |
---|
| 614 | ∀size_proof: 0 < size. |
---|
| 615 | m < 2^size → get_index_v bool (S size) (bitvector_of_nat (S size) m) 1 ? = false. |
---|
| 616 | normalize in size_proof; normalize @le_S_S assumption |
---|
| 617 | qed. |
---|
| 618 | |
---|
| 619 | axiom zero_add_head: |
---|
| 620 | ∀m: nat. |
---|
| 621 | ∀tl, hd. |
---|
| 622 | (hd:::add m (zero m) tl) = add (S m) (zero (S m)) (hd:::tl). |
---|
| 623 | |
---|
| 624 | lemma zero_add: |
---|
| 625 | ∀m: nat. |
---|
| 626 | ∀b: BitVector m. |
---|
| 627 | add m (zero m) b = b. |
---|
| 628 | #m #b elim b try % |
---|
| 629 | #m' #hd #tl #inductive_hypothesis |
---|
| 630 | <inductive_hypothesis in ⊢ (???%); |
---|
| 631 | >zero_add_head % |
---|
| 632 | qed. |
---|
| 633 | |
---|
| 634 | axiom bitvector_of_nat_one_Sm: |
---|
| 635 | ∀m: nat. |
---|
| 636 | ∃b: BitVector m. |
---|
| 637 | bitvector_of_nat (S m) 1 ≃ b @@ [[true]]. |
---|
| 638 | |
---|
| 639 | axiom increment_zero_bitvector_of_nat_1: |
---|
| 640 | ∀m: nat. |
---|
| 641 | ∀b: BitVector m. |
---|
| 642 | increment m b = add m (bitvector_of_nat m 1) b. |
---|
| 643 | |
---|
[1946] | 644 | axiom add_associative: |
---|
[2108] | 645 | ∀m: nat. |
---|
| 646 | ∀l, c, r: BitVector m. |
---|
| 647 | add m l (add m c r) = add m (add m l c) r. |
---|
[1946] | 648 | |
---|
[2108] | 649 | lemma bitvector_of_nat_aux_buffer: |
---|
| 650 | ∀m, n: nat. |
---|
| 651 | ∀b: BitVector m. |
---|
| 652 | bitvector_of_nat_aux m n b = add m (bitvector_of_nat m n) b. |
---|
| 653 | #m #n elim n |
---|
| 654 | [1: |
---|
| 655 | #b change with (? = add ? (zero …) b) |
---|
| 656 | >zero_add % |
---|
| 657 | |2: |
---|
| 658 | #n' #inductive_hypothesis #b |
---|
| 659 | whd in match (bitvector_of_nat_aux ???); |
---|
| 660 | >inductive_hypothesis whd in match (bitvector_of_nat ??) in ⊢ (???%); |
---|
| 661 | >inductive_hypothesis >increment_zero_bitvector_of_nat_1 |
---|
| 662 | >increment_zero_bitvector_of_nat_1 <(add_zero m (bitvector_of_nat m 1)) |
---|
| 663 | <add_associative % |
---|
| 664 | ] |
---|
| 665 | qed. |
---|
| 666 | |
---|
| 667 | definition sign_extension: Byte → Word ≝ |
---|
| 668 | λc. |
---|
| 669 | let b ≝ get_index_v ? 8 c 1 ? in |
---|
| 670 | [[ b; b; b; b; b; b; b; b ]] @@ c. |
---|
| 671 | normalize |
---|
| 672 | repeat (@le_S_S) |
---|
| 673 | @le_O_n |
---|
| 674 | qed. |
---|
| 675 | |
---|
| 676 | lemma bitvector_of_nat_sign_extension_equivalence: |
---|
| 677 | ∀m: nat. |
---|
| 678 | ∀size_proof: m < 128. |
---|
| 679 | sign_extension … (bitvector_of_nat 8 m) = bitvector_of_nat 16 m. |
---|
| 680 | #m #size_proof whd in ⊢ (??%?); |
---|
| 681 | >most_significant_bit_zero |
---|
| 682 | [1: |
---|
| 683 | elim m |
---|
| 684 | [1: |
---|
| 685 | % |
---|
| 686 | |2: |
---|
| 687 | #n' #inductive_hypothesis whd in match bitvector_of_nat; normalize nodelta |
---|
| 688 | whd in match (bitvector_of_nat_aux ???); |
---|
| 689 | whd in match (bitvector_of_nat_aux ???) in ⊢ (???%); |
---|
| 690 | >(bitvector_of_nat_aux_buffer 16 n') |
---|
| 691 | cases daemon |
---|
| 692 | ] |
---|
| 693 | |2: |
---|
| 694 | assumption |
---|
| 695 | ] |
---|
| 696 | qed. |
---|
| 697 | |
---|
[1963] | 698 | axiom add_commutative: |
---|
| 699 | ∀n: nat. |
---|
| 700 | ∀l, r: BitVector n. |
---|
| 701 | add … l r = add … r l. |
---|
| 702 | |
---|
[2111] | 703 | axiom nat_of_bitvector_add: |
---|
| 704 | ∀n,v1,v2. |
---|
| 705 | nat_of_bitvector n v1 + nat_of_bitvector n v2 < 2^n → |
---|
| 706 | nat_of_bitvector n (add n v1 v2) = nat_of_bitvector n v1 + nat_of_bitvector n v2. |
---|
| 707 | |
---|
[2154] | 708 | axiom add_bitvector_of_nat: |
---|
| 709 | ∀n,m1,m2. |
---|
| 710 | bitvector_of_nat n (m1 + m2) = |
---|
| 711 | add n (bitvector_of_nat n m1) (bitvector_of_nat n m2). |
---|
| 712 | |
---|
[2192] | 713 | (* CSC: corollary of add_bitvector_of_nat *) |
---|
| 714 | axiom add_overflow: |
---|
| 715 | ∀n,m,r. m + r = 2^n → |
---|
| 716 | add n (bitvector_of_nat n m) (bitvector_of_nat n r) = zero n. |
---|
| 717 | |
---|
[1946] | 718 | example add_SO: |
---|
[1955] | 719 | ∀n: nat. |
---|
| 720 | ∀m: nat. |
---|
| 721 | add n (bitvector_of_nat … m) (bitvector_of_nat … 1) = bitvector_of_nat … (S m). |
---|
[1934] | 722 | cases daemon. |
---|
| 723 | qed. |
---|
| 724 | |
---|
[2028] | 725 | axiom add_bitvector_of_nat_plus: |
---|
| 726 | ∀n,p,q:nat. |
---|
| 727 | add n (bitvector_of_nat ? p) (bitvector_of_nat ? q) = bitvector_of_nat ? (p+q). |
---|
| 728 | |
---|
[2124] | 729 | lemma add_bitvector_of_nat_Sm: |
---|
| 730 | ∀n, m: nat. |
---|
| 731 | add … (bitvector_of_nat … 1) (bitvector_of_nat … m) = |
---|
| 732 | bitvector_of_nat n (S m). |
---|
| 733 | #n #m @add_bitvector_of_nat_plus |
---|
| 734 | qed. |
---|
| 735 | |
---|
[2149] | 736 | axiom le_to_le_nat_of_bitvector_add: |
---|
| 737 | ∀n,v,m1,m2. |
---|
| 738 | m2 < 2^n → nat_of_bitvector n v + m2 < 2^n → m1 ≤ m2 → |
---|
| 739 | nat_of_bitvector n (add n v (bitvector_of_nat n m1)) ≤ |
---|
| 740 | nat_of_bitvector n (add n v (bitvector_of_nat n m2)). |
---|
| 741 | |
---|
| 742 | lemma lt_to_lt_nat_of_bitvector_add: |
---|
| 743 | ∀n,v,m1,m2. |
---|
| 744 | m2 < 2^n → nat_of_bitvector n v + m2 < 2^n → m1 < m2 → |
---|
| 745 | nat_of_bitvector n (add n v (bitvector_of_nat n m1)) < |
---|
| 746 | nat_of_bitvector n (add n v (bitvector_of_nat n m2)). |
---|
| 747 | #n #v #m1 #m2 #m2_ok #bounded #H |
---|
| 748 | lapply (le_to_le_nat_of_bitvector_add n v (S m1) m2 ??) try assumption |
---|
| 749 | #K @(transitive_le … (K H)) |
---|
| 750 | cases daemon (*CSC: TRUE, complete*) |
---|
| 751 | qed. |
---|
| 752 | |
---|
[961] | 753 | definition sign_bit : ∀n. BitVector n → bool ≝ |
---|
| 754 | λn,v. match v with [ VEmpty ⇒ false | VCons _ h _ ⇒ h ]. |
---|
| 755 | |
---|
| 756 | definition sign_extend : ∀m,n. BitVector m → BitVector (n+m) ≝ |
---|
| 757 | λm,n,v. pad_vector ? (sign_bit ? v) ?? v. |
---|
| 758 | |
---|
| 759 | definition zero_ext : ∀m,n. BitVector m → BitVector n ≝ |
---|
| 760 | λm,n. |
---|
| 761 | match nat_compare m n return λm,n.λ_. BitVector m → BitVector n with |
---|
| 762 | [ nat_lt m' n' ⇒ λv. switch_bv_plus … (pad … v) |
---|
| 763 | | nat_eq n' ⇒ λv. v |
---|
[2032] | 764 | | nat_gt m' n' ⇒ λv. \snd (vsplit … (switch_bv_plus … v)) |
---|
[961] | 765 | ]. |
---|
| 766 | |
---|
| 767 | definition sign_ext : ∀m,n. BitVector m → BitVector n ≝ |
---|
| 768 | λm,n. |
---|
| 769 | match nat_compare m n return λm,n.λ_. BitVector m → BitVector n with |
---|
| 770 | [ nat_lt m' n' ⇒ λv. switch_bv_plus … (sign_extend … v) |
---|
| 771 | | nat_eq n' ⇒ λv. v |
---|
[2032] | 772 | | nat_gt m' n' ⇒ λv. \snd (vsplit … (switch_bv_plus … v)) |
---|
[961] | 773 | ]. |
---|
| 774 | |
---|
[2124] | 775 | example sub_minus_one_seven_eight: |
---|
| 776 | ∀v: BitVector 7. |
---|
| 777 | false ::: (\fst (sub_7_with_carry v (bitvector_of_nat ? 1) false)) = |
---|
| 778 | \fst (sub_8_with_carry (false ::: v) (bitvector_of_nat ? 1) false). |
---|
| 779 | cases daemon. |
---|
| 780 | qed. |
---|
| 781 | |
---|
| 782 | axiom sub16_with_carry_overflow: |
---|
| 783 | ∀left, right, result: BitVector 16. |
---|
| 784 | ∀flags: BitVector 3. |
---|
| 785 | ∀upper: BitVector 9. |
---|
| 786 | ∀lower: BitVector 7. |
---|
| 787 | sub_16_with_carry left right false = 〈result, flags〉 → |
---|
| 788 | vsplit bool 9 7 result = 〈upper, lower〉 → |
---|
| 789 | get_index_v bool 3 flags 2 ? = true → |
---|
| 790 | upper = [[true; true; true; true; true; true; true; true; true]]. |
---|
| 791 | // |
---|
| 792 | qed. |
---|
| 793 | |
---|
| 794 | axiom sub_16_to_add_16_8_0: |
---|
| 795 | ∀v1,v2: BitVector 16. ∀v3: BitVector 7. ∀flags: BitVector 3. |
---|
| 796 | get_index' ? 2 0 flags = false → |
---|
| 797 | sub_16_with_carry v1 v2 false = 〈(zero 9)@@v3,flags〉 → |
---|
| 798 | v1 = add ? v2 (sign_extension (false:::v3)). |
---|
| 799 | |
---|
| 800 | axiom sub_16_to_add_16_8_1: |
---|
| 801 | ∀v1,v2: BitVector 16. ∀v3: BitVector 7. ∀flags: BitVector 3. |
---|
| 802 | get_index' ? 2 0 flags = true → |
---|
| 803 | sub_16_with_carry v1 v2 false = 〈[[true;true;true;true;true;true;true;true;true]]@@v3,flags〉 → |
---|
[2149] | 804 | v1 = add ? v2 (sign_extension (true:::v3)). |
---|