1 | open Preamble |
---|
2 | |
---|
3 | open Bool |
---|
4 | |
---|
5 | open Relations |
---|
6 | |
---|
7 | open Nat |
---|
8 | |
---|
9 | open Hints_declaration |
---|
10 | |
---|
11 | open Core_notation |
---|
12 | |
---|
13 | open Pts |
---|
14 | |
---|
15 | open Logic |
---|
16 | |
---|
17 | open Types |
---|
18 | |
---|
19 | open List |
---|
20 | |
---|
21 | open Jmeq |
---|
22 | |
---|
23 | open Russell |
---|
24 | |
---|
25 | type dAEMONXXX = |
---|
26 | | K1DAEMONXXX |
---|
27 | | K2DAEMONXXX |
---|
28 | |
---|
29 | (** val dAEMONXXX_rect_Type4 : 'a1 -> 'a1 -> dAEMONXXX -> 'a1 **) |
---|
30 | let rec dAEMONXXX_rect_Type4 h_K1DAEMONXXX h_K2DAEMONXXX = function |
---|
31 | | K1DAEMONXXX -> h_K1DAEMONXXX |
---|
32 | | K2DAEMONXXX -> h_K2DAEMONXXX |
---|
33 | |
---|
34 | (** val dAEMONXXX_rect_Type5 : 'a1 -> 'a1 -> dAEMONXXX -> 'a1 **) |
---|
35 | let rec dAEMONXXX_rect_Type5 h_K1DAEMONXXX h_K2DAEMONXXX = function |
---|
36 | | K1DAEMONXXX -> h_K1DAEMONXXX |
---|
37 | | K2DAEMONXXX -> h_K2DAEMONXXX |
---|
38 | |
---|
39 | (** val dAEMONXXX_rect_Type3 : 'a1 -> 'a1 -> dAEMONXXX -> 'a1 **) |
---|
40 | let rec dAEMONXXX_rect_Type3 h_K1DAEMONXXX h_K2DAEMONXXX = function |
---|
41 | | K1DAEMONXXX -> h_K1DAEMONXXX |
---|
42 | | K2DAEMONXXX -> h_K2DAEMONXXX |
---|
43 | |
---|
44 | (** val dAEMONXXX_rect_Type2 : 'a1 -> 'a1 -> dAEMONXXX -> 'a1 **) |
---|
45 | let rec dAEMONXXX_rect_Type2 h_K1DAEMONXXX h_K2DAEMONXXX = function |
---|
46 | | K1DAEMONXXX -> h_K1DAEMONXXX |
---|
47 | | K2DAEMONXXX -> h_K2DAEMONXXX |
---|
48 | |
---|
49 | (** val dAEMONXXX_rect_Type1 : 'a1 -> 'a1 -> dAEMONXXX -> 'a1 **) |
---|
50 | let rec dAEMONXXX_rect_Type1 h_K1DAEMONXXX h_K2DAEMONXXX = function |
---|
51 | | K1DAEMONXXX -> h_K1DAEMONXXX |
---|
52 | | K2DAEMONXXX -> h_K2DAEMONXXX |
---|
53 | |
---|
54 | (** val dAEMONXXX_rect_Type0 : 'a1 -> 'a1 -> dAEMONXXX -> 'a1 **) |
---|
55 | let rec dAEMONXXX_rect_Type0 h_K1DAEMONXXX h_K2DAEMONXXX = function |
---|
56 | | K1DAEMONXXX -> h_K1DAEMONXXX |
---|
57 | | K2DAEMONXXX -> h_K2DAEMONXXX |
---|
58 | |
---|
59 | (** val dAEMONXXX_inv_rect_Type4 : |
---|
60 | dAEMONXXX -> (__ -> 'a1) -> (__ -> 'a1) -> 'a1 **) |
---|
61 | let dAEMONXXX_inv_rect_Type4 hterm h1 h2 = |
---|
62 | let hcut = dAEMONXXX_rect_Type4 h1 h2 hterm in hcut __ |
---|
63 | |
---|
64 | (** val dAEMONXXX_inv_rect_Type3 : |
---|
65 | dAEMONXXX -> (__ -> 'a1) -> (__ -> 'a1) -> 'a1 **) |
---|
66 | let dAEMONXXX_inv_rect_Type3 hterm h1 h2 = |
---|
67 | let hcut = dAEMONXXX_rect_Type3 h1 h2 hterm in hcut __ |
---|
68 | |
---|
69 | (** val dAEMONXXX_inv_rect_Type2 : |
---|
70 | dAEMONXXX -> (__ -> 'a1) -> (__ -> 'a1) -> 'a1 **) |
---|
71 | let dAEMONXXX_inv_rect_Type2 hterm h1 h2 = |
---|
72 | let hcut = dAEMONXXX_rect_Type2 h1 h2 hterm in hcut __ |
---|
73 | |
---|
74 | (** val dAEMONXXX_inv_rect_Type1 : |
---|
75 | dAEMONXXX -> (__ -> 'a1) -> (__ -> 'a1) -> 'a1 **) |
---|
76 | let dAEMONXXX_inv_rect_Type1 hterm h1 h2 = |
---|
77 | let hcut = dAEMONXXX_rect_Type1 h1 h2 hterm in hcut __ |
---|
78 | |
---|
79 | (** val dAEMONXXX_inv_rect_Type0 : |
---|
80 | dAEMONXXX -> (__ -> 'a1) -> (__ -> 'a1) -> 'a1 **) |
---|
81 | let dAEMONXXX_inv_rect_Type0 hterm h1 h2 = |
---|
82 | let hcut = dAEMONXXX_rect_Type0 h1 h2 hterm in hcut __ |
---|
83 | |
---|
84 | (** val dAEMONXXX_discr : dAEMONXXX -> dAEMONXXX -> __ **) |
---|
85 | let dAEMONXXX_discr x y = |
---|
86 | Logic.eq_rect_Type2 x |
---|
87 | (match x with |
---|
88 | | K1DAEMONXXX -> Obj.magic (fun _ dH -> dH) |
---|
89 | | K2DAEMONXXX -> Obj.magic (fun _ dH -> dH)) y |
---|
90 | |
---|
91 | (** val dAEMONXXX_jmdiscr : dAEMONXXX -> dAEMONXXX -> __ **) |
---|
92 | let dAEMONXXX_jmdiscr x y = |
---|
93 | Logic.eq_rect_Type2 x |
---|
94 | (match x with |
---|
95 | | K1DAEMONXXX -> Obj.magic (fun _ dH -> dH) |
---|
96 | | K2DAEMONXXX -> Obj.magic (fun _ dH -> dH)) y |
---|
97 | |
---|
98 | (** val ltb : Nat.nat -> Nat.nat -> Bool.bool **) |
---|
99 | let ltb m n = |
---|
100 | Nat.leb (Nat.S m) n |
---|
101 | |
---|
102 | (** val geb : Nat.nat -> Nat.nat -> Bool.bool **) |
---|
103 | let geb m n = |
---|
104 | Nat.leb n m |
---|
105 | |
---|
106 | (** val gtb : Nat.nat -> Nat.nat -> Bool.bool **) |
---|
107 | let gtb m n = |
---|
108 | ltb n m |
---|
109 | |
---|
110 | (** val eq_nat : Nat.nat -> Nat.nat -> Bool.bool **) |
---|
111 | let rec eq_nat n m = |
---|
112 | match n with |
---|
113 | | Nat.O -> |
---|
114 | (match m with |
---|
115 | | Nat.O -> Bool.True |
---|
116 | | Nat.S x -> Bool.False) |
---|
117 | | Nat.S n' -> |
---|
118 | (match m with |
---|
119 | | Nat.O -> Bool.False |
---|
120 | | Nat.S m' -> eq_nat n' m') |
---|
121 | |
---|
122 | (** val forall : ('a1 -> Bool.bool) -> 'a1 List.list -> Bool.bool **) |
---|
123 | let rec forall f = function |
---|
124 | | List.Nil -> Bool.True |
---|
125 | | List.Cons (hd, tl) -> Bool.andb (f hd) (forall f tl) |
---|
126 | |
---|
127 | (** val prefix : Nat.nat -> 'a1 List.list -> 'a1 List.list **) |
---|
128 | let rec prefix k = function |
---|
129 | | List.Nil -> List.Nil |
---|
130 | | List.Cons (hd, tl) -> |
---|
131 | (match k with |
---|
132 | | Nat.O -> List.Nil |
---|
133 | | Nat.S k' -> List.Cons (hd, (prefix k' tl))) |
---|
134 | |
---|
135 | (** val fold_left2 : |
---|
136 | ('a1 -> 'a2 -> 'a3 -> 'a1) -> 'a1 -> 'a2 List.list -> 'a3 List.list -> |
---|
137 | 'a1 **) |
---|
138 | let rec fold_left2 f accu left right = |
---|
139 | (match left with |
---|
140 | | List.Nil -> |
---|
141 | (fun _ -> |
---|
142 | (match right with |
---|
143 | | List.Nil -> (fun _ -> accu) |
---|
144 | | List.Cons (hd, tl) -> |
---|
145 | (fun _ -> |
---|
146 | Obj.magic Nat.nat_discr Nat.O (Nat.S (List.length tl)) __)) __) |
---|
147 | | List.Cons (hd, tl) -> |
---|
148 | (fun _ -> |
---|
149 | (match right with |
---|
150 | | List.Nil -> |
---|
151 | (fun _ -> |
---|
152 | Obj.magic Nat.nat_discr (Nat.S (List.length tl)) Nat.O __) |
---|
153 | | List.Cons (hd', tl') -> |
---|
154 | (fun _ -> fold_left2 f (f accu hd hd') tl tl')) __)) __ |
---|
155 | |
---|
156 | (** val remove_n_first_internal : |
---|
157 | Nat.nat -> 'a1 List.list -> Nat.nat -> 'a1 List.list **) |
---|
158 | let rec remove_n_first_internal i l n = |
---|
159 | match l with |
---|
160 | | List.Nil -> List.Nil |
---|
161 | | List.Cons (hd, tl) -> |
---|
162 | (match eq_nat i n with |
---|
163 | | Bool.True -> l |
---|
164 | | Bool.False -> remove_n_first_internal (Nat.S i) tl n) |
---|
165 | |
---|
166 | (** val remove_n_first : Nat.nat -> 'a1 List.list -> 'a1 List.list **) |
---|
167 | let remove_n_first n l = |
---|
168 | remove_n_first_internal Nat.O l n |
---|
169 | |
---|
170 | (** val foldi_from_until_internal : |
---|
171 | Nat.nat -> 'a1 List.list -> 'a1 List.list -> Nat.nat -> (Nat.nat -> 'a1 |
---|
172 | List.list -> 'a1 -> 'a1 List.list) -> 'a1 List.list **) |
---|
173 | let rec foldi_from_until_internal i res rem m f = |
---|
174 | match rem with |
---|
175 | | List.Nil -> res |
---|
176 | | List.Cons (e, tl) -> |
---|
177 | (match geb i m with |
---|
178 | | Bool.True -> res |
---|
179 | | Bool.False -> foldi_from_until_internal (Nat.S i) (f i res e) tl m f) |
---|
180 | |
---|
181 | (** val foldi_from_until : |
---|
182 | Nat.nat -> Nat.nat -> (Nat.nat -> 'a1 List.list -> 'a1 -> 'a1 List.list) |
---|
183 | -> 'a1 List.list -> 'a1 List.list -> 'a1 List.list **) |
---|
184 | let foldi_from_until n m f a l = |
---|
185 | foldi_from_until_internal Nat.O a (remove_n_first n l) m f |
---|
186 | |
---|
187 | (** val foldi_from : |
---|
188 | Nat.nat -> (Nat.nat -> 'a1 List.list -> 'a1 -> 'a1 List.list) -> 'a1 |
---|
189 | List.list -> 'a1 List.list -> 'a1 List.list **) |
---|
190 | let foldi_from n f a l = |
---|
191 | foldi_from_until n (List.length l) f a l |
---|
192 | |
---|
193 | (** val foldi_until : |
---|
194 | Nat.nat -> (Nat.nat -> 'a1 List.list -> 'a1 -> 'a1 List.list) -> 'a1 |
---|
195 | List.list -> 'a1 List.list -> 'a1 List.list **) |
---|
196 | let foldi_until m f a l = |
---|
197 | foldi_from_until Nat.O m f a l |
---|
198 | |
---|
199 | (** val foldi : |
---|
200 | (Nat.nat -> 'a1 List.list -> 'a1 -> 'a1 List.list) -> 'a1 List.list -> |
---|
201 | 'a1 List.list -> 'a1 List.list **) |
---|
202 | let foldi f a l = |
---|
203 | foldi_from_until Nat.O (List.length l) f a l |
---|
204 | |
---|
205 | (** val hd_safe : 'a1 List.list -> 'a1 **) |
---|
206 | let hd_safe l = |
---|
207 | (match l with |
---|
208 | | List.Nil -> (fun _ -> assert false (* absurd case *)) |
---|
209 | | List.Cons (hd, tl) -> (fun _ -> hd)) __ |
---|
210 | |
---|
211 | (** val tail_safe : 'a1 List.list -> 'a1 List.list **) |
---|
212 | let tail_safe l = |
---|
213 | (match l with |
---|
214 | | List.Nil -> (fun _ -> assert false (* absurd case *)) |
---|
215 | | List.Cons (hd, tl) -> (fun _ -> tl)) __ |
---|
216 | |
---|
217 | (** val safe_split : |
---|
218 | 'a1 List.list -> Nat.nat -> ('a1 List.list, 'a1 List.list) Types.prod **) |
---|
219 | let rec safe_split l index = |
---|
220 | (match index with |
---|
221 | | Nat.O -> (fun _ -> { Types.fst = List.Nil; Types.snd = l }) |
---|
222 | | Nat.S index' -> |
---|
223 | (fun _ -> |
---|
224 | (match l with |
---|
225 | | List.Nil -> (fun _ -> assert false (* absurd case *)) |
---|
226 | | List.Cons (hd, tl) -> |
---|
227 | (fun _ -> |
---|
228 | let { Types.fst = l1; Types.snd = l2 } = safe_split tl index' in |
---|
229 | { Types.fst = (List.Cons (hd, l1)); Types.snd = l2 })) __)) __ |
---|
230 | |
---|
231 | (** val nth_safe : Nat.nat -> 'a1 List.list -> 'a1 **) |
---|
232 | let rec nth_safe index the_list = |
---|
233 | (match index with |
---|
234 | | Nat.O -> |
---|
235 | (match the_list with |
---|
236 | | List.Nil -> (fun _ -> Logic.false_rect_Type0 __) |
---|
237 | | List.Cons (hd, tl) -> (fun _ -> hd)) |
---|
238 | | Nat.S index' -> |
---|
239 | (match the_list with |
---|
240 | | List.Nil -> (fun _ -> Logic.false_rect_Type0 __) |
---|
241 | | List.Cons (hd, tl) -> (fun _ -> nth_safe index' tl))) __ |
---|
242 | |
---|
243 | (** val last_safe : 'a1 List.list -> 'a1 **) |
---|
244 | let last_safe the_list = |
---|
245 | nth_safe (Nat.minus (List.length the_list) (Nat.S Nat.O)) the_list |
---|
246 | |
---|
247 | (** val reduce : |
---|
248 | 'a1 List.list -> 'a2 List.list -> (('a1 List.list, 'a1 List.list) |
---|
249 | Types.prod, ('a2 List.list, 'a2 List.list) Types.prod) Types.prod **) |
---|
250 | let rec reduce left right = |
---|
251 | match left with |
---|
252 | | List.Nil -> |
---|
253 | { Types.fst = { Types.fst = List.Nil; Types.snd = List.Nil }; Types.snd = |
---|
254 | { Types.fst = List.Nil; Types.snd = right } } |
---|
255 | | List.Cons (hd, tl) -> |
---|
256 | (match right with |
---|
257 | | List.Nil -> |
---|
258 | { Types.fst = { Types.fst = List.Nil; Types.snd = left }; Types.snd = |
---|
259 | { Types.fst = List.Nil; Types.snd = List.Nil } } |
---|
260 | | List.Cons (hd', tl') -> |
---|
261 | let { Types.fst = cleft; Types.snd = cright } = reduce tl tl' in |
---|
262 | let { Types.fst = commonl; Types.snd = restl } = cleft in |
---|
263 | let { Types.fst = commonr; Types.snd = restr } = cright in |
---|
264 | { Types.fst = { Types.fst = (List.Cons (hd, commonl)); Types.snd = |
---|
265 | restl }; Types.snd = { Types.fst = (List.Cons (hd', commonr)); |
---|
266 | Types.snd = restr } }) |
---|
267 | |
---|
268 | (** val reduce_strong : |
---|
269 | 'a1 List.list -> 'a2 List.list -> (('a1 List.list, 'a1 List.list) |
---|
270 | Types.prod, ('a2 List.list, 'a2 List.list) Types.prod) Types.prod |
---|
271 | Types.sig0 **) |
---|
272 | let rec reduce_strong left right = |
---|
273 | (match left with |
---|
274 | | List.Nil -> |
---|
275 | (fun _ -> { Types.fst = { Types.fst = List.Nil; Types.snd = List.Nil }; |
---|
276 | Types.snd = { Types.fst = List.Nil; Types.snd = right } }) |
---|
277 | | List.Cons (hd, tl) -> |
---|
278 | (fun _ -> |
---|
279 | (match right with |
---|
280 | | List.Nil -> |
---|
281 | (fun _ -> { Types.fst = { Types.fst = List.Nil; Types.snd = left }; |
---|
282 | Types.snd = { Types.fst = List.Nil; Types.snd = List.Nil } }) |
---|
283 | | List.Cons (hd', tl') -> |
---|
284 | (fun _ -> |
---|
285 | (let { Types.fst = cleft; Types.snd = cright } = |
---|
286 | Types.pi1 (reduce_strong tl tl') |
---|
287 | in |
---|
288 | (fun _ -> |
---|
289 | (let { Types.fst = commonl; Types.snd = restl } = cleft in |
---|
290 | (fun _ -> |
---|
291 | (let { Types.fst = commonr; Types.snd = restr } = cright in |
---|
292 | (fun _ -> { Types.fst = { Types.fst = (List.Cons (hd, commonl)); |
---|
293 | Types.snd = restl }; Types.snd = { Types.fst = (List.Cons (hd', |
---|
294 | commonr)); Types.snd = restr } })) __)) __)) __)) __)) __ |
---|
295 | |
---|
296 | (** val map2_opt : |
---|
297 | ('a1 -> 'a2 -> 'a3) -> 'a1 List.list -> 'a2 List.list -> 'a3 List.list |
---|
298 | Types.option **) |
---|
299 | let rec map2_opt f left right = |
---|
300 | match left with |
---|
301 | | List.Nil -> |
---|
302 | (match right with |
---|
303 | | List.Nil -> Types.Some List.Nil |
---|
304 | | List.Cons (x, x0) -> Types.None) |
---|
305 | | List.Cons (hd, tl) -> |
---|
306 | (match right with |
---|
307 | | List.Nil -> Types.None |
---|
308 | | List.Cons (hd', tl') -> |
---|
309 | (match map2_opt f tl tl' with |
---|
310 | | Types.None -> Types.None |
---|
311 | | Types.Some tail -> Types.Some (List.Cons ((f hd hd'), tail)))) |
---|
312 | |
---|
313 | (** val map2 : |
---|
314 | ('a1 -> 'a2 -> 'a3) -> 'a1 List.list -> 'a2 List.list -> 'a3 List.list **) |
---|
315 | let rec map2 f left right = |
---|
316 | (match left with |
---|
317 | | List.Nil -> |
---|
318 | (match right with |
---|
319 | | List.Nil -> (fun _ -> List.Nil) |
---|
320 | | List.Cons (x, x0) -> |
---|
321 | (fun _ -> Obj.magic Nat.nat_discr Nat.O (Nat.S (List.length x0)) __)) |
---|
322 | | List.Cons (hd, tl) -> |
---|
323 | (match right with |
---|
324 | | List.Nil -> |
---|
325 | (fun _ -> Obj.magic Nat.nat_discr (Nat.S (List.length tl)) Nat.O __) |
---|
326 | | List.Cons (hd', tl') -> |
---|
327 | (fun _ -> List.Cons ((f hd hd'), (map2 f tl tl'))))) __ |
---|
328 | |
---|
329 | (** val map3 : |
---|
330 | ('a1 -> 'a2 -> 'a3 -> 'a4) -> 'a1 List.list -> 'a2 List.list -> 'a3 |
---|
331 | List.list -> 'a4 List.list **) |
---|
332 | let rec map3 f left centre right = |
---|
333 | (match left with |
---|
334 | | List.Nil -> |
---|
335 | (fun _ -> |
---|
336 | (match centre with |
---|
337 | | List.Nil -> |
---|
338 | (fun _ -> |
---|
339 | (match right with |
---|
340 | | List.Nil -> (fun _ -> List.Nil) |
---|
341 | | List.Cons (hd, tl) -> |
---|
342 | (fun _ -> |
---|
343 | Obj.magic Nat.nat_discr Nat.O (Nat.S (List.length tl)) __)) |
---|
344 | __) |
---|
345 | | List.Cons (hd, tl) -> |
---|
346 | (fun _ -> |
---|
347 | Logic.eq_rect_Type0 (List.length centre) |
---|
348 | (Logic.eq_rect_Type0 (List.length List.Nil) (fun _ -> |
---|
349 | Obj.magic Nat.nat_discr (Nat.S (List.length tl)) Nat.O __) |
---|
350 | (List.length centre)) (List.length right) __)) __) |
---|
351 | | List.Cons (hd, tl) -> |
---|
352 | (fun _ -> |
---|
353 | (match centre with |
---|
354 | | List.Nil -> |
---|
355 | (fun _ -> |
---|
356 | Logic.eq_rect_Type0 (List.length centre) |
---|
357 | (Logic.eq_rect_Type0 (List.length (List.Cons (hd, tl))) |
---|
358 | (fun _ -> |
---|
359 | Obj.magic Nat.nat_discr Nat.O (Nat.S (List.length tl)) __) |
---|
360 | (List.length centre)) (List.length right) __) |
---|
361 | | List.Cons (hd', tl') -> |
---|
362 | (fun _ -> |
---|
363 | (match right with |
---|
364 | | List.Nil -> |
---|
365 | (fun _ _ -> |
---|
366 | Obj.magic Nat.nat_discr (Nat.S (List.length tl')) Nat.O __) |
---|
367 | | List.Cons (hd'', tl'') -> |
---|
368 | (fun _ _ -> List.Cons ((f hd hd' hd''), (map3 f tl tl' tl'')))) |
---|
369 | __ __)) __)) __ |
---|
370 | |
---|
371 | (** val eq_rect_Type0_r : 'a1 -> 'a2 -> 'a1 -> 'a2 **) |
---|
372 | let eq_rect_Type0_r a h x = |
---|
373 | (fun _ auto -> auto) __ h |
---|
374 | |
---|
375 | (** val safe_nth : Nat.nat -> 'a1 List.list -> 'a1 **) |
---|
376 | let rec safe_nth n l = |
---|
377 | (match n with |
---|
378 | | Nat.O -> |
---|
379 | (match l with |
---|
380 | | List.Nil -> (fun _ -> Logic.false_rect_Type0 __) |
---|
381 | | List.Cons (hd, tl) -> (fun _ -> hd)) |
---|
382 | | Nat.S n' -> |
---|
383 | (match l with |
---|
384 | | List.Nil -> (fun _ -> Logic.false_rect_Type0 __) |
---|
385 | | List.Cons (hd, tl) -> (fun _ -> safe_nth n' tl))) __ |
---|
386 | |
---|
387 | (** val nub_by_internal : |
---|
388 | ('a1 -> 'a1 -> Bool.bool) -> 'a1 List.list -> Nat.nat -> 'a1 List.list **) |
---|
389 | let rec nub_by_internal f l = function |
---|
390 | | Nat.O -> |
---|
391 | (match l with |
---|
392 | | List.Nil -> List.Nil |
---|
393 | | List.Cons (hd, tl) -> l) |
---|
394 | | Nat.S n0 -> |
---|
395 | (match l with |
---|
396 | | List.Nil -> List.Nil |
---|
397 | | List.Cons (hd, tl) -> |
---|
398 | List.Cons (hd, |
---|
399 | (nub_by_internal f (List.filter (fun y -> Bool.notb (f y hd)) tl) n0))) |
---|
400 | |
---|
401 | (** val nub_by : |
---|
402 | ('a1 -> 'a1 -> Bool.bool) -> 'a1 List.list -> 'a1 List.list **) |
---|
403 | let nub_by f l = |
---|
404 | nub_by_internal f l (List.length l) |
---|
405 | |
---|
406 | (** val member : |
---|
407 | ('a1 -> 'a1 -> Bool.bool) -> 'a1 -> 'a1 List.list -> Bool.bool **) |
---|
408 | let rec member eq a = function |
---|
409 | | List.Nil -> Bool.False |
---|
410 | | List.Cons (hd, tl) -> Bool.orb (eq a hd) (member eq a tl) |
---|
411 | |
---|
412 | (** val take : Nat.nat -> 'a1 List.list -> 'a1 List.list **) |
---|
413 | let rec take n l = |
---|
414 | match n with |
---|
415 | | Nat.O -> List.Nil |
---|
416 | | Nat.S n0 -> |
---|
417 | (match l with |
---|
418 | | List.Nil -> List.Nil |
---|
419 | | List.Cons (hd, tl) -> List.Cons (hd, (take n0 tl))) |
---|
420 | |
---|
421 | (** val drop : Nat.nat -> 'a1 List.list -> 'a1 List.list **) |
---|
422 | let rec drop n l = |
---|
423 | match n with |
---|
424 | | Nat.O -> l |
---|
425 | | Nat.S n0 -> |
---|
426 | (match l with |
---|
427 | | List.Nil -> List.Nil |
---|
428 | | List.Cons (hd, tl) -> drop n0 tl) |
---|
429 | |
---|
430 | (** val list_split : |
---|
431 | Nat.nat -> 'a1 List.list -> ('a1 List.list, 'a1 List.list) Types.prod **) |
---|
432 | let list_split n l = |
---|
433 | { Types.fst = (take n l); Types.snd = (drop n l) } |
---|
434 | |
---|
435 | (** val mapi_internal : |
---|
436 | Nat.nat -> (Nat.nat -> 'a1 -> 'a2) -> 'a1 List.list -> 'a2 List.list **) |
---|
437 | let rec mapi_internal n f = function |
---|
438 | | List.Nil -> List.Nil |
---|
439 | | List.Cons (hd, tl) -> |
---|
440 | List.Cons ((f n hd), (mapi_internal (Nat.plus n (Nat.S Nat.O)) f tl)) |
---|
441 | |
---|
442 | (** val mapi : (Nat.nat -> 'a1 -> 'a2) -> 'a1 List.list -> 'a2 List.list **) |
---|
443 | let mapi f l = |
---|
444 | mapi_internal Nat.O f l |
---|
445 | |
---|
446 | (** val zip_pottier : |
---|
447 | 'a1 List.list -> 'a2 List.list -> ('a1, 'a2) Types.prod List.list **) |
---|
448 | let rec zip_pottier left right = |
---|
449 | match left with |
---|
450 | | List.Nil -> List.Nil |
---|
451 | | List.Cons (hd, tl) -> |
---|
452 | (match right with |
---|
453 | | List.Nil -> List.Nil |
---|
454 | | List.Cons (hd', tl') -> |
---|
455 | List.Cons ({ Types.fst = hd; Types.snd = hd' }, (zip_pottier tl tl'))) |
---|
456 | |
---|
457 | (** val zip_safe : |
---|
458 | 'a1 List.list -> 'a2 List.list -> ('a1, 'a2) Types.prod List.list **) |
---|
459 | let rec zip_safe left right = |
---|
460 | (match left with |
---|
461 | | List.Nil -> |
---|
462 | (fun _ -> |
---|
463 | (match right with |
---|
464 | | List.Nil -> (fun _ -> List.Nil) |
---|
465 | | List.Cons (hd, tl) -> |
---|
466 | (fun _ -> |
---|
467 | Obj.magic Nat.nat_discr Nat.O (Nat.S (List.length tl)) __)) __) |
---|
468 | | List.Cons (hd, tl) -> |
---|
469 | (fun _ -> |
---|
470 | (match right with |
---|
471 | | List.Nil -> |
---|
472 | (fun _ -> |
---|
473 | Obj.magic Nat.nat_discr (Nat.S (List.length tl)) Nat.O __) |
---|
474 | | List.Cons (hd', tl') -> |
---|
475 | (fun _ -> List.Cons ({ Types.fst = hd; Types.snd = hd' }, |
---|
476 | (zip_safe tl tl')))) __)) __ |
---|
477 | |
---|
478 | (** val zip : |
---|
479 | 'a1 List.list -> 'a2 List.list -> ('a1, 'a2) Types.prod List.list |
---|
480 | Types.option **) |
---|
481 | let rec zip l r = |
---|
482 | match l with |
---|
483 | | List.Nil -> Types.Some List.Nil |
---|
484 | | List.Cons (hd, tl) -> |
---|
485 | (match r with |
---|
486 | | List.Nil -> Types.None |
---|
487 | | List.Cons (hd', tl') -> |
---|
488 | (match zip tl tl' with |
---|
489 | | Types.None -> Types.None |
---|
490 | | Types.Some tail -> |
---|
491 | Types.Some (List.Cons ({ Types.fst = hd; Types.snd = hd' }, tail)))) |
---|
492 | |
---|
493 | (** val foldl : ('a1 -> 'a2 -> 'a1) -> 'a1 -> 'a2 List.list -> 'a1 **) |
---|
494 | let rec foldl f a = function |
---|
495 | | List.Nil -> a |
---|
496 | | List.Cons (hd, tl) -> foldl f (f a hd) tl |
---|
497 | |
---|
498 | (** val rev : 'a1 List.list -> 'a1 List.list **) |
---|
499 | let rev l = |
---|
500 | List.reverse l |
---|
501 | |
---|
502 | (** val fold_left_i_aux : |
---|
503 | (Nat.nat -> 'a1 -> 'a2 -> 'a1) -> 'a1 -> Nat.nat -> 'a2 List.list -> 'a1 **) |
---|
504 | let rec fold_left_i_aux f x i = function |
---|
505 | | List.Nil -> x |
---|
506 | | List.Cons (hd, tl) -> fold_left_i_aux f (f i x hd) (Nat.S i) tl |
---|
507 | |
---|
508 | (** val fold_left_i : |
---|
509 | (Nat.nat -> 'a1 -> 'a2 -> 'a1) -> 'a1 -> 'a2 List.list -> 'a1 **) |
---|
510 | let fold_left_i f x = |
---|
511 | fold_left_i_aux f x Nat.O |
---|
512 | |
---|
513 | (** val function_apply : ('a1 -> 'a2) -> 'a1 -> 'a2 **) |
---|
514 | let function_apply f a = |
---|
515 | f a |
---|
516 | |
---|
517 | (** val iterate : ('a1 -> 'a1) -> 'a1 -> Nat.nat -> 'a1 **) |
---|
518 | let rec iterate f a = function |
---|
519 | | Nat.O -> a |
---|
520 | | Nat.S o -> f (iterate f a o) |
---|
521 | |
---|
522 | (** val division_aux : Nat.nat -> Nat.nat -> Nat.nat -> Nat.nat **) |
---|
523 | let rec division_aux m n p = |
---|
524 | match ltb n (Nat.S p) with |
---|
525 | | Bool.True -> Nat.O |
---|
526 | | Bool.False -> |
---|
527 | (match m with |
---|
528 | | Nat.O -> Nat.O |
---|
529 | | Nat.S q -> Nat.S (division_aux q (Nat.minus n (Nat.S p)) p)) |
---|
530 | |
---|
531 | (** val division : Nat.nat -> Nat.nat -> Nat.nat **) |
---|
532 | let division m = function |
---|
533 | | Nat.O -> Nat.S m |
---|
534 | | Nat.S o -> division_aux m m o |
---|
535 | |
---|
536 | (** val modulus_aux : Nat.nat -> Nat.nat -> Nat.nat -> Nat.nat **) |
---|
537 | let rec modulus_aux m n p = |
---|
538 | match Nat.leb n p with |
---|
539 | | Bool.True -> n |
---|
540 | | Bool.False -> |
---|
541 | (match m with |
---|
542 | | Nat.O -> n |
---|
543 | | Nat.S o -> modulus_aux o (Nat.minus n (Nat.S p)) p) |
---|
544 | |
---|
545 | (** val modulus : Nat.nat -> Nat.nat -> Nat.nat **) |
---|
546 | let modulus m = function |
---|
547 | | Nat.O -> m |
---|
548 | | Nat.S o -> modulus_aux m m o |
---|
549 | |
---|
550 | (** val divide_with_remainder : |
---|
551 | Nat.nat -> Nat.nat -> (Nat.nat, Nat.nat) Types.prod **) |
---|
552 | let divide_with_remainder m n = |
---|
553 | { Types.fst = (division m n); Types.snd = (modulus m n) } |
---|
554 | |
---|
555 | (** val less_than_or_equal_b_elim : |
---|
556 | Nat.nat -> Nat.nat -> (__ -> 'a1) -> (__ -> 'a1) -> 'a1 **) |
---|
557 | let less_than_or_equal_b_elim m n h1 h2 = |
---|
558 | (match Nat.leb m n with |
---|
559 | | Bool.True -> (fun _ _ -> h1 __) |
---|
560 | | Bool.False -> (fun _ _ -> h2 __)) __ __ |
---|
561 | |
---|
562 | open Div_and_mod |
---|
563 | |
---|
564 | (** val dpi1__o__bool_to_Prop__o__inject : |
---|
565 | (Bool.bool, 'a1) Types.dPair -> __ Types.sig0 **) |
---|
566 | let dpi1__o__bool_to_Prop__o__inject x2 = |
---|
567 | __ |
---|
568 | |
---|
569 | (** val eject__o__bool_to_Prop__o__inject : |
---|
570 | Bool.bool Types.sig0 -> __ Types.sig0 **) |
---|
571 | let eject__o__bool_to_Prop__o__inject x2 = |
---|
572 | __ |
---|
573 | |
---|
574 | (** val bool_to_Prop__o__inject : Bool.bool -> __ Types.sig0 **) |
---|
575 | let bool_to_Prop__o__inject x1 = |
---|
576 | __ |
---|
577 | |
---|
578 | (** val dpi1__o__bool_to_Prop_to_eq__o__inject : |
---|
579 | Bool.bool -> (__, 'a1) Types.dPair -> __ Types.sig0 **) |
---|
580 | let dpi1__o__bool_to_Prop_to_eq__o__inject x0 x3 = |
---|
581 | __ |
---|
582 | |
---|
583 | (** val eject__o__bool_to_Prop_to_eq__o__inject : |
---|
584 | Bool.bool -> __ Types.sig0 -> __ Types.sig0 **) |
---|
585 | let eject__o__bool_to_Prop_to_eq__o__inject x0 x3 = |
---|
586 | __ |
---|
587 | |
---|
588 | (** val bool_to_Prop_to_eq__o__inject : Bool.bool -> __ Types.sig0 **) |
---|
589 | let bool_to_Prop_to_eq__o__inject x0 = |
---|
590 | __ |
---|
591 | |
---|
592 | (** val dpi1__o__not_bool_to_Prop_to_eq__o__inject : |
---|
593 | Bool.bool -> (__, 'a1) Types.dPair -> __ Types.sig0 **) |
---|
594 | let dpi1__o__not_bool_to_Prop_to_eq__o__inject x0 x3 = |
---|
595 | __ |
---|
596 | |
---|
597 | (** val eject__o__not_bool_to_Prop_to_eq__o__inject : |
---|
598 | Bool.bool -> __ Types.sig0 -> __ Types.sig0 **) |
---|
599 | let eject__o__not_bool_to_Prop_to_eq__o__inject x0 x3 = |
---|
600 | __ |
---|
601 | |
---|
602 | (** val not_bool_to_Prop_to_eq__o__inject : Bool.bool -> __ Types.sig0 **) |
---|
603 | let not_bool_to_Prop_to_eq__o__inject x0 = |
---|
604 | __ |
---|
605 | |
---|
606 | (** val if_then_else_safe : |
---|
607 | Bool.bool -> (__ -> 'a1) -> (__ -> 'a1) -> 'a1 **) |
---|
608 | let if_then_else_safe b f g = |
---|
609 | (match b with |
---|
610 | | Bool.True -> f |
---|
611 | | Bool.False -> g) __ |
---|
612 | |
---|
613 | (** val dpi1__o__not_neq_None__o__inject : |
---|
614 | 'a1 Types.option -> (__, 'a2) Types.dPair -> __ Types.sig0 **) |
---|
615 | let dpi1__o__not_neq_None__o__inject x1 x4 = |
---|
616 | __ |
---|
617 | |
---|
618 | (** val eject__o__not_neq_None__o__inject : |
---|
619 | 'a1 Types.option -> __ Types.sig0 -> __ Types.sig0 **) |
---|
620 | let eject__o__not_neq_None__o__inject x1 x4 = |
---|
621 | __ |
---|
622 | |
---|
623 | (** val not_neq_None__o__inject : 'a1 Types.option -> __ Types.sig0 **) |
---|
624 | let not_neq_None__o__inject x1 = |
---|
625 | __ |
---|
626 | |
---|
627 | (** val prod_jmdiscr : |
---|
628 | ('a1, 'a2) Types.prod -> ('a1, 'a2) Types.prod -> __ **) |
---|
629 | let prod_jmdiscr x y = |
---|
630 | Logic.eq_rect_Type2 x |
---|
631 | (let { Types.fst = a0; Types.snd = a10 } = x in |
---|
632 | Obj.magic (fun _ dH -> dH __ __)) y |
---|
633 | |
---|
634 | (** val eq_rect_Type1_r : 'a1 -> 'a2 -> 'a1 -> 'a2 **) |
---|
635 | let eq_rect_Type1_r a h x = |
---|
636 | (fun _ auto -> auto) __ h |
---|
637 | |
---|
638 | (** val some_Some_elim : 'a1 -> 'a1 -> (__ -> 'a2) -> 'a2 **) |
---|
639 | let some_Some_elim x y h = |
---|
640 | h __ |
---|
641 | |
---|
642 | (** val pose : 'a1 -> ('a1 -> __ -> 'a2) -> 'a2 **) |
---|
643 | let pose a auto = |
---|
644 | auto a __ |
---|
645 | |
---|
646 | (** val eq_sum : |
---|
647 | ('a1 -> 'a1 -> Bool.bool) -> ('a2 -> 'a2 -> Bool.bool) -> ('a1, 'a2) |
---|
648 | Types.sum -> ('a1, 'a2) Types.sum -> Bool.bool **) |
---|
649 | let eq_sum leq req left right = |
---|
650 | match left with |
---|
651 | | Types.Inl l -> |
---|
652 | (match right with |
---|
653 | | Types.Inl l' -> leq l l' |
---|
654 | | Types.Inr x -> Bool.False) |
---|
655 | | Types.Inr r -> |
---|
656 | (match right with |
---|
657 | | Types.Inl x -> Bool.False |
---|
658 | | Types.Inr r' -> req r r') |
---|
659 | |
---|
660 | (** val eq_prod : |
---|
661 | ('a1 -> 'a1 -> Bool.bool) -> ('a2 -> 'a2 -> Bool.bool) -> ('a1, 'a2) |
---|
662 | Types.prod -> ('a1, 'a2) Types.prod -> Bool.bool **) |
---|
663 | let eq_prod leq req left right = |
---|
664 | let { Types.fst = l; Types.snd = r } = left in |
---|
665 | let { Types.fst = l'; Types.snd = r' } = right in |
---|
666 | Bool.andb (leq l l') (req r r') |
---|
667 | |
---|