1 | (**************************************************************************) |
---|
2 | (* ___ *) |
---|
3 | (* ||M|| *) |
---|
4 | (* ||A|| A project by Andrea Asperti *) |
---|
5 | (* ||T|| *) |
---|
6 | (* ||I|| Developers: *) |
---|
7 | (* ||T|| The HELM team. *) |
---|
8 | (* ||A|| http://helm.cs.unibo.it *) |
---|
9 | (* \ / *) |
---|
10 | (* \ / This file is distributed under the terms of the *) |
---|
11 | (* v GNU General Public License Version 2 *) |
---|
12 | (* *) |
---|
13 | (**************************************************************************) |
---|
14 | |
---|
15 | include "Language.ma". |
---|
16 | |
---|
17 | |
---|
18 | (* Syntax *) |
---|
19 | |
---|
20 | definition variable ≝ DeqNat. |
---|
21 | |
---|
22 | inductive expr: Type[0] ≝ |
---|
23 | Var: variable → expr |
---|
24 | | Const: DeqNat → expr |
---|
25 | | Plus: expr → expr → expr |
---|
26 | | Minus: expr → expr → expr. |
---|
27 | |
---|
28 | inductive condition: Type[0] ≝ |
---|
29 | Eq: expr → expr → condition |
---|
30 | | Not: condition → condition. |
---|
31 | |
---|
32 | let rec expr_eq (e1:expr) (e2:expr) on e1 :bool≝ |
---|
33 | match e1 with [Var v1⇒ match e2 with [Var v2⇒ eqb v1 v2|_⇒ false] |
---|
34 | |Const v1⇒ match e2 with [Const v2⇒ eqb v1 v2|_⇒ false] |
---|
35 | |Plus le1 re1 ⇒ match e2 with [Plus le2 re2 ⇒ andb (expr_eq le1 le2) (expr_eq re1 re2)|_⇒ false] |
---|
36 | |Minus le1 re1 ⇒ match e2 with [Minus le2 re2 ⇒ andb (expr_eq le1 le2) (expr_eq re1 re2)|_⇒ false] |
---|
37 | ]. |
---|
38 | |
---|
39 | lemma expr_eq_elim : ∀P : bool → Prop.∀e1,e2.(e1 = e2 → P true) → (e1 ≠ e2 → P false) → P (expr_eq e1 e2). |
---|
40 | #P #e1 lapply P -P elim e1 -e1 |
---|
41 | [1,2: #v #P * [1,5: #v' |2,6: #v' |*: #e1 #e2 ] #H1 #H2 normalize try(@H2 % #EQ destruct) @(eqb_elim v v') |
---|
42 | [1,3: #EQ destruct @H1 % |*: * #H @H2 % #EQ destruct @H %] |
---|
43 | |*: #e1 #e2 #IH1 #IH2 #P * [1,5: #v' |2,6: #v' |*: #e1' #e2' ] #H1 #H2 try(@H2 % #EQ destruct) normalize |
---|
44 | @IH1 |
---|
45 | [1,3: #EQ destruct normalize @IH2 [1,3: #EQ destruct @H1 % |*: * #H @H2 % #EQ destruct @H %] |
---|
46 | |*: * #H @H2 % #EQ destruct @H % |
---|
47 | ] |
---|
48 | ] |
---|
49 | qed. |
---|
50 | |
---|
51 | definition DeqExpr ≝ |
---|
52 | mk_DeqSet expr expr_eq ?. |
---|
53 | @hide_prf #e1 #e2 @expr_eq_elim |
---|
54 | [ #EQ destruct % // | * #H % #EQ destruct cases H % ] |
---|
55 | qed. |
---|
56 | |
---|
57 | unification hint 0 ≔ ; |
---|
58 | X ≟ DeqExpr |
---|
59 | (* ---------------------------------------- *) ⊢ |
---|
60 | expr ≡ carr X. |
---|
61 | |
---|
62 | (* |
---|
63 | unification hint 0 ≔ p1,p2; |
---|
64 | X ≟ DeqExpr |
---|
65 | (* ---------------------------------------- *) ⊢ |
---|
66 | expr_eq p1 p2 ≡ eqb X p1 p2. |
---|
67 | *) |
---|
68 | (* for the syntactical record in Language.ma *) |
---|
69 | |
---|
70 | |
---|
71 | (* seq_i: type of sequential instructions *) |
---|
72 | |
---|
73 | inductive seq_i:Type[0]≝ |sAss: variable → expr → seq_i. |
---|
74 | |
---|
75 | definition seq_i_eq:seq_i→ seq_i → bool≝λs1,s2:seq_i. |
---|
76 | match s1 with [ |
---|
77 | sAss v e ⇒ match s2 with [sAss v' e' ⇒ (andb (v==v') (expr_eq e e')) ] |
---|
78 | ]. |
---|
79 | |
---|
80 | |
---|
81 | lemma seq_i_eq_elim : ∀P : bool → Prop.∀s1,s2.(s1 = s2 → P true) → (s1 ≠ s2→ P false) → P (seq_i_eq s1 s2). |
---|
82 | #P * #v #e * #v' #e' #H1 #H2 normalize @(eqb_elim v v') |
---|
83 | [ #EQ destruct @expr_eq_elim [ #EQ destruct @H1 % | * #H @H2 % #EQ destruct @H %] |
---|
84 | | * #H @H2 % #EQ destruct @H % |
---|
85 | ] |
---|
86 | qed. |
---|
87 | |
---|
88 | definition DeqSeqI ≝ mk_DeqSet seq_i seq_i_eq ?. |
---|
89 | @hide_prf #e1 #e2 @seq_i_eq_elim |
---|
90 | [ #EQ destruct % // | * #H % #EQ destruct cases H % ] |
---|
91 | qed. |
---|
92 | |
---|
93 | unification hint 0 ≔ ; |
---|
94 | X ≟ DeqSeqI |
---|
95 | (* ---------------------------------------- *) ⊢ |
---|
96 | seq_i ≡ carr X. |
---|
97 | |
---|
98 | (* ambigous input! why? |
---|
99 | unification hint 0 ≔ p1,p2; |
---|
100 | X ≟ DeqSeqI |
---|
101 | (* ---------------------------------------- *) ⊢ |
---|
102 | seq_i_eq p1 p2 ≡ eqb X p1 p2. |
---|
103 | *) |
---|
104 | |
---|
105 | |
---|
106 | let rec cond_i_eq (c1:condition) (c2:condition):bool ≝ |
---|
107 | match c1 with [Eq e1 e2⇒ match c2 with [Eq f1 f2 ⇒ |
---|
108 | (andb (expr_eq e1 f1) (expr_eq e2 f2))|_⇒ false] |
---|
109 | |Not e⇒ match c2 with [Not f⇒ cond_i_eq e f|_⇒ false]]. |
---|
110 | |
---|
111 | lemma cond_i_eq_elim : ∀P : bool → Prop.∀c1,c2.(c1 = c2 → P true) → (c1 ≠c2 → P false) → P (cond_i_eq c1 c2). |
---|
112 | #P #c1 lapply P -P elim c1 -c1 |
---|
113 | [ #e1 #e2 #P * [ #e1' #e2' | #c' ] #H1 #H2 normalize try (@H2 % #EQ destruct) @expr_eq_elim |
---|
114 | [ #EQ destruct @expr_eq_elim [#EQ destruct @H1 % | * #H @H2 % #EQ destruct @H %] |
---|
115 | | * #H @H2 % #EQ destruct @H % |
---|
116 | ] |
---|
117 | | #c #IH #P * [ #e1' #e2' | #c' ] #H1 #H2 normalize try (@H2 % #EQ destruct) @IH |
---|
118 | [#EQ destruct @H1 % | * #H @H2 % #EQ destruct @H %] |
---|
119 | ] |
---|
120 | qed. |
---|
121 | |
---|
122 | definition DeqCondition ≝ mk_DeqSet condition cond_i_eq ?. |
---|
123 | @hide_prf #e1 #e2 @cond_i_eq_elim |
---|
124 | [ #EQ destruct % // | * #H % #EQ destruct cases H % ] |
---|
125 | qed. |
---|
126 | |
---|
127 | unification hint 0 ≔ ; |
---|
128 | X ≟ DeqCondition |
---|
129 | (* ---------------------------------------- *) ⊢ |
---|
130 | condition ≡ carr X. |
---|
131 | |
---|
132 | (* ambigous input!!! |
---|
133 | unification hint 0 ≔ p1,p2; |
---|
134 | X ≟ DeqCondition |
---|
135 | (* ---------------------------------------- *) ⊢ |
---|
136 | cond_i_eq p1 p2 ≡ eqb X p1 p2. |
---|
137 | *) |
---|
138 | |
---|
139 | (* syntactical record *) |
---|
140 | |
---|
141 | definition imp_instr_params: instr_params ≝ mk_instr_params DeqSeqI DeqFalse |
---|
142 | DeqCondition DeqCondition (DeqProd variable DeqExpr) DeqExpr. |
---|
143 | |
---|
144 | definition environment ≝ DeqSet_List (DeqProd variable DeqNat). |
---|
145 | |
---|
146 | |
---|
147 | definition default_env: environment ≝ nil ?. |
---|
148 | |
---|
149 | |
---|
150 | let rec assign (env:environment) (v:variable) (n:DeqNat):environment ≝match env with |
---|
151 | [nil ⇒ [mk_Prod … v n] |
---|
152 | |cons hd tl ⇒ |
---|
153 | let 〈v',n'〉≝ hd in if (v==v') |
---|
154 | then 〈v,n〉::tl |
---|
155 | else hd::(assign tl v n) |
---|
156 | ]. |
---|
157 | |
---|
158 | let rec read (env:environment) (v:variable):(option DeqNat)≝match env with |
---|
159 | [nil ⇒ None … |
---|
160 | |cons hd tl ⇒ let 〈v',n〉≝ hd in |
---|
161 | if (v==v') |
---|
162 | then Some … n |
---|
163 | else read tl v |
---|
164 | ]. |
---|
165 | |
---|
166 | |
---|
167 | lemma assign_hit: ∀env,v,val. read (assign env v val) v = Some … val. |
---|
168 | #env elim env |
---|
169 | [2: * #v' #val' #env' #IH #v #val whd in match (assign ???); |
---|
170 | inversion (v==v') |
---|
171 | [#INV whd in ⊢ (??%?); >(\b (refl …)) % |
---|
172 | |#INV whd in ⊢ (??%?); >INV whd in ⊢ (??%?); @IH ] |
---|
173 | |#v #val whd in match (assign [ ] v val); normalize >(eqb_n_n v) %]qed. |
---|
174 | |
---|
175 | |
---|
176 | |
---|
177 | lemma assign_miss: ∀env,v1,v2,val. v2 ≠ v1 → (read (assign env v1 val) v2)= (read env v2). |
---|
178 | #env #v1 #v2 #val #E elim env [normalize >(not_eq_to_eqb_false v2 v1) /2 by refl, not_to_not/ |
---|
179 | |* #v #n #env' #IH inversion(v1==v) #INV [lapply(\P INV)|lapply(\Pf INV)] #K [destruct |
---|
180 | whd in match (assign ???); >INV normalize nodelta whd in match (read (〈v,n〉::env') v2); |
---|
181 | inversion(v2==v) #INV2 >INV2 normalize nodelta |
---|
182 | whd in match (read (〈v,val〉::env') v2); >INV2 normalize nodelta |
---|
183 | whd in match (read (〈v,n〉::env') v2); try % |
---|
184 | lapply (\P INV2) #ABS cases(absurd ? ABS E) |
---|
185 | (*elim E #ABS2 lapply (ABS2 ABS) #F cases F*) |
---|
186 | |whd in match (assign ???); >INV normalize nodelta whd in match (read ??); |
---|
187 | inversion(v2==v) #INV2 whd in match(if ? then ? else ?); |
---|
188 | [whd in match (read ??); >INV2 % |
---|
189 | |>IH whd in match (read (〈v,n〉::env') v2); >INV2 % |
---|
190 | qed. |
---|
191 | |
---|
192 | let rec sem_expr (env:environment) (e: expr) on e : (option nat) ≝ |
---|
193 | match e with |
---|
194 | [ Var v ⇒ read env v |
---|
195 | | Const n ⇒ Some ? n |
---|
196 | | Plus e1 e2 ⇒ !n1 ← sem_expr env e1; |
---|
197 | !n2 ← sem_expr env e2; |
---|
198 | return (n1+n2) |
---|
199 | | Minus e1 e2 ⇒ !n1 ← sem_expr env e1; |
---|
200 | !n2 ← sem_expr env e2; |
---|
201 | return (n1-n2) |
---|
202 | ]. |
---|
203 | |
---|
204 | let rec sem_condition (env:environment) (c:condition) on c : option bool ≝ |
---|
205 | match c with |
---|
206 | [ Eq e1 e2 ⇒ !n ← sem_expr env e1; |
---|
207 | !m ← sem_expr env e2; |
---|
208 | return (eqb n m) |
---|
209 | | Not c ⇒ !b ← sem_condition env c; |
---|
210 | return (notb b) |
---|
211 | ]. |
---|
212 | |
---|
213 | |
---|
214 | |
---|
215 | (*CERCO*) |
---|
216 | |
---|
217 | definition imp_env_params:env_params≝mk_env_params variable. |
---|
218 | |
---|
219 | definition store_t≝ DeqSet_List (DeqProd environment variable). |
---|
220 | |
---|
221 | definition imp_state_params:state_params≝ |
---|
222 | mk_state_params imp_instr_params imp_env_params flat_labels store_t (*DeqEnv*). |
---|
223 | |
---|
224 | definition current_env:store_type imp_state_params→ option environment≝λs.!hd ← option_hd … s; return \fst hd. |
---|
225 | |
---|
226 | definition assign_var ≝ λenv:store_t.λv:variable.λn:DeqNat. |
---|
227 | match env with |
---|
228 | [ nil ⇒ None ? |
---|
229 | | cons hd tl ⇒ let 〈e,var〉 ≝ hd in return (〈assign e v n,var〉 :: tl) |
---|
230 | ]. |
---|
231 | |
---|
232 | |
---|
233 | definition imp_eval_seq:seq_i →store_t→ option store_t |
---|
234 | ≝λi,s. |
---|
235 | match i with |
---|
236 | [sAss v e ⇒ match s with |
---|
237 | [nil⇒ None ? |
---|
238 | |cons hd tl⇒ let 〈env,var〉 ≝ hd in |
---|
239 | ! n ← sem_expr env e; |
---|
240 | assign_var s v n |
---|
241 | ] |
---|
242 | ]. |
---|
243 | |
---|
244 | |
---|
245 | definition imp_eval_io: False → store_t→ option store_t≝?. |
---|
246 | // qed. |
---|
247 | |
---|
248 | definition imp_eval_cond_cond:condition → store_t→ option (bool × store_t)≝λc,s. |
---|
249 | !env ← current_env s; |
---|
250 | !b ← sem_condition env c; |
---|
251 | return 〈b,s〉. |
---|
252 | |
---|
253 | |
---|
254 | definition imp_eval_loop_cond:condition→ store_t → option (bool × store_t)≝ |
---|
255 | imp_eval_cond_cond. |
---|
256 | |
---|
257 | definition imp_init_store: store_t≝[〈(nil ?),O〉]. |
---|
258 | |
---|
259 | definition imp_signature≝signature imp_state_params imp_state_params. |
---|
260 | |
---|
261 | definition imp_eval_call:imp_signature→ (variable × expr) → store_t → (option store_t)≝ |
---|
262 | λsgn,e,st. |
---|
263 | match sgn with |
---|
264 | [ mk_signature fun fpt rt ⇒ |
---|
265 | let 〈var,act_exp〉 ≝ e in |
---|
266 | match st with |
---|
267 | [nil ⇒ None ? |
---|
268 | |cons hd tl⇒ let 〈env,v〉≝ hd in |
---|
269 | !n ← sem_expr env act_exp; |
---|
270 | assign_var (〈(nil ?),var〉::st) fpt n |
---|
271 | ] |
---|
272 | ]. |
---|
273 | |
---|
274 | definition imp_return_call:expr→ store_t→ (option store_t)≝ |
---|
275 | λr,s.match s with |
---|
276 | [nil⇒ None ? |
---|
277 | |cons hd tl⇒ let 〈env,v〉≝ hd in |
---|
278 | !n ← sem_expr env r; |
---|
279 | assign_var tl v n |
---|
280 | ]. |
---|
281 | |
---|
282 | |
---|
283 | definition imp_sem_state_params : sem_state_params imp_state_params ≝ mk_sem_state_params imp_state_params imp_eval_seq imp_eval_io |
---|
284 | imp_eval_cond_cond imp_eval_loop_cond imp_eval_call imp_return_call imp_init_store. |
---|
285 | |
---|
286 | (* Abitare tipo Instructions *) |
---|
287 | |
---|
288 | definition imp_Instructions≝Instructions imp_state_params flat_labels. |
---|
289 | |
---|
290 | definition imp_envitem≝ (env_item imp_env_params imp_instr_params flat_labels). |
---|