1 | include "Exponential.ma". |
---|
2 | include "BitVector.ma". |
---|
3 | |
---|
4 | ndefinition nat_of_bool ≝ |
---|
5 | λb: Bool. |
---|
6 | match b with |
---|
7 | [ false ⇒ Z |
---|
8 | | true ⇒ S Z |
---|
9 | ]. |
---|
10 | |
---|
11 | ndefinition add_n_with_carry: |
---|
12 | ∀n: Nat. ∀b, c: BitVector n. ∀carry: Bool. Cartesian (BitVector n) (BitVector three) ≝ |
---|
13 | λn: Nat. |
---|
14 | λb: BitVector n. |
---|
15 | λc: BitVector n. |
---|
16 | λcarry: Bool. |
---|
17 | let b_as_nat ≝ nat_of_bitvector n b in |
---|
18 | let c_as_nat ≝ nat_of_bitvector n c in |
---|
19 | let carry_as_nat ≝ nat_of_bool carry in |
---|
20 | let result_old ≝ b_as_nat + c_as_nat + carry_as_nat in |
---|
21 | let ac_flag ≝ ((modulus b_as_nat ((S (S Z)) * n)) + |
---|
22 | (modulus c_as_nat ((S (S Z)) * n)) + |
---|
23 | c_as_nat) ≳ ((S (S Z)) * n) in |
---|
24 | let bit_xxx ≝ (((modulus b_as_nat ((S (S Z))^(n - (S Z)))) + |
---|
25 | (modulus c_as_nat ((S (S Z))^(n - (S Z)))) + |
---|
26 | c_as_nat) ≳ ((S (S Z))^(n - (S Z)))) in |
---|
27 | let result ≝ modulus result_old ((S (S Z))^n) in |
---|
28 | let cy_flag ≝ (result_old ≳ ((S (S Z))^n)) in |
---|
29 | let ov_flag ≝ exclusive_disjunction cy_flag bit_xxx in |
---|
30 | mk_Cartesian ? ? (bitvector_of_nat n result) |
---|
31 | ([[ cy_flag ; ac_flag ; ov_flag ]]). |
---|
32 | |
---|
33 | ndefinition sub_n_with_carry: ∀n: Nat. ∀b,c: BitVector n. ∀carry: Bool. Cartesian (BitVector n) (BitVector three) ≝ |
---|
34 | λn: Nat. |
---|
35 | λb: BitVector n. |
---|
36 | λc: BitVector n. |
---|
37 | λcarry: Bool. |
---|
38 | let b_as_nat ≝ nat_of_bitvector n b in |
---|
39 | let c_as_nat ≝ nat_of_bitvector n c in |
---|
40 | let carry_as_nat ≝ nat_of_bool carry in |
---|
41 | let temporary ≝ (b_as_nat mod (two * n)) - (c_as_nat mod (two * n)) in |
---|
42 | let ac_flag ≝ less_than_b (b_as_nat mod (two * n)) ((c_as_nat mod (two * n)) + carry_as_nat) in |
---|
43 | let bit_six ≝ less_than_b (b_as_nat mod (two^(n - one))) ((c_as_nat mod (two^(n - one))) + carry_as_nat) in |
---|
44 | let 〈b',cy_flag〉 ≝ |
---|
45 | if greater_than_or_equal_b b_as_nat (c_as_nat + carry_as_nat) then |
---|
46 | 〈b_as_nat, false〉 |
---|
47 | else |
---|
48 | 〈b_as_nat + (two^n), true〉 |
---|
49 | in |
---|
50 | let ov_flag ≝ exclusive_disjunction cy_flag bit_six in |
---|
51 | 〈bitvector_of_nat n ((b' - c_as_nat) - carry_as_nat), [[ cy_flag; ac_flag; ov_flag ]]〉. |
---|
52 | |
---|
53 | |
---|
54 | ndefinition sub_8_with_carry ≝ sub_n_with_carry eight. |
---|
55 | ndefinition sub_16_with_carry ≝ sub_n_with_carry sixteen. |
---|
56 | |
---|
57 | ndefinition add_8_with_carry ≝ add_n_with_carry eight. |
---|
58 | ndefinition add_16_with_carry ≝ add_n_with_carry sixteen. |
---|
59 | |
---|
60 | ndefinition increment ≝ |
---|
61 | λn: Nat. |
---|
62 | λb: BitVector n. |
---|
63 | let b_as_nat ≝ (nat_of_bitvector n b) + (S Z) in |
---|
64 | let overflow ≝ b_as_nat ≳ (S (S Z))^n in |
---|
65 | match overflow with |
---|
66 | [ false ⇒ bitvector_of_nat n b_as_nat |
---|
67 | | true ⇒ zero n |
---|
68 | ]. |
---|
69 | |
---|
70 | ndefinition decrement ≝ |
---|
71 | λn: Nat. |
---|
72 | λb: BitVector n. |
---|
73 | let b_as_nat ≝ nat_of_bitvector n b in |
---|
74 | match b_as_nat with |
---|
75 | [ Z ⇒ max n |
---|
76 | | S o ⇒ bitvector_of_nat n o |
---|
77 | ]. |
---|
78 | |
---|
79 | alias symbol "greater_than_or_equal" (instance 1) = "Nat greater than or equal prop". |
---|
80 | |
---|
81 | ndefinition bitvector_of_bool: |
---|
82 | ∀n: Nat. ∀b: Bool. BitVector (S n) ≝ |
---|
83 | λn: Nat. |
---|
84 | λb: Bool. |
---|
85 | (pad (S n - (S Z)) (S Z) [[b]])⌈(S n - (S Z)) + S Z ↦ S n⌉. |
---|
86 | /2/. |
---|
87 | nqed. |
---|
88 | |
---|
89 | ndefinition full_add ≝ |
---|
90 | λn: Nat. |
---|
91 | λb, c: BitVector n. |
---|
92 | λd: Bit. |
---|
93 | fold_right2_i ? ? ? ( |
---|
94 | λn. |
---|
95 | λb1, b2: Bool. |
---|
96 | λd: Bit × (BitVector n). |
---|
97 | let 〈c1,r〉 ≝ d in |
---|
98 | 〈inclusive_disjunction (conjunction b1 b2) |
---|
99 | (conjunction c1 (inclusive_disjunction b1 b2)), |
---|
100 | (exclusive_disjunction (exclusive_disjunction b1 b2) c1) ::: r〉) |
---|
101 | 〈d, [[ ]]〉 ? b c. |
---|
102 | |
---|
103 | ndefinition half_add ≝ |
---|
104 | λn: Nat. |
---|
105 | λb, c: BitVector n. |
---|
106 | full_add n b c false. |
---|