1 | (* *********************************************************************) |
---|
2 | (* *) |
---|
3 | (* The Compcert verified compiler *) |
---|
4 | (* *) |
---|
5 | (* Xavier Leroy, INRIA Paris-Rocquencourt *) |
---|
6 | (* *) |
---|
7 | (* Copyright Institut National de Recherche en Informatique et en *) |
---|
8 | (* Automatique. All rights reserved. This file is distributed *) |
---|
9 | (* under the terms of the GNU General Public License as published by *) |
---|
10 | (* the Free Software Foundation, either version 2 of the License, or *) |
---|
11 | (* (at your option) any later version. This file is also distributed *) |
---|
12 | (* under the terms of the INRIA Non-Commercial License Agreement. *) |
---|
13 | (* *) |
---|
14 | (* *********************************************************************) |
---|
15 | |
---|
16 | (* * This file defines a number of data types and operations used in |
---|
17 | the abstract syntax trees of many of the intermediate languages. *) |
---|
18 | |
---|
19 | include "datatypes/sums.ma". |
---|
20 | include "extralib.ma". |
---|
21 | include "Integers.ma". |
---|
22 | include "Floats.ma". |
---|
23 | include "binary/positive.ma". |
---|
24 | |
---|
25 | (* * * Syntactic elements *) |
---|
26 | |
---|
27 | (* * Identifiers (names of local variables, of global symbols and functions, |
---|
28 | etc) are represented by the type [positive] of positive integers. *) |
---|
29 | |
---|
30 | ndefinition ident ≝ Pos. |
---|
31 | |
---|
32 | ndefinition ident_eq : ∀x,y:ident. (x=y) + (x≠y). |
---|
33 | #x y; nlapply (pos_compare_to_Prop x y); ncases (pos_compare x y); |
---|
34 | ##[ #H; @2; /2/; ##| #H; @1; //; ##| #H; @2; /2/ ##] nqed. |
---|
35 | |
---|
36 | (* |
---|
37 | (* XXX: we use nats for now, but if in future we use binary like compcert |
---|
38 | then the maps will be easier to define. *) |
---|
39 | ndefinition ident ≝ nat. |
---|
40 | ndefinition ident_eq : ∀x,y:ident. (x=y) + (x≠y). |
---|
41 | #x; nelim x; |
---|
42 | ##[ #y; ncases y; /3/; |
---|
43 | ##| #x'; #IH; #y; ncases y; |
---|
44 | ##[ @2; @; #H; ndestruct |
---|
45 | ##| #y'; nelim (IH y'); |
---|
46 | ##[ #e; ndestruct; /2/ |
---|
47 | ##| #ne; @2; /2/; |
---|
48 | ##] |
---|
49 | ##] |
---|
50 | ##] nqed. |
---|
51 | *) |
---|
52 | (* * The intermediate languages are weakly typed, using only two types: |
---|
53 | [Tint] for integers and pointers, and [Tfloat] for floating-point |
---|
54 | numbers. *) |
---|
55 | |
---|
56 | ninductive typ : Type ≝ |
---|
57 | | ASTint : typ |
---|
58 | | ASTfloat : typ. |
---|
59 | |
---|
60 | ndefinition typesize : typ → Z ≝ λty. |
---|
61 | match ty return λ_.Z with [ ASTint ⇒ 4 | ASTfloat ⇒ 8 ]. |
---|
62 | |
---|
63 | nlemma typesize_pos: ∀ty. typesize ty > 0. |
---|
64 | #ty; ncases ty; //; nqed. |
---|
65 | |
---|
66 | nlemma typ_eq: ∀t1,t2: typ. (t1=t2) + (t1≠t2). |
---|
67 | #t1;#t2;ncases t1;ncases t2;/2/; @2; napply nmk; #H; ndestruct; nqed. |
---|
68 | |
---|
69 | nlemma opt_typ_eq: ∀t1,t2: option typ. (t1=t2) + (t1≠t2). |
---|
70 | #t1;#t2;ncases t1;ncases t2;/2/; |
---|
71 | ##[ ##1,2: #ty; @2; napply nmk; #H; ndestruct; |
---|
72 | ##| #ty1;#ty2; nelim (typ_eq ty1 ty2); /2/; #neq; @2; napply nmk; |
---|
73 | #H; ndestruct; /2/; |
---|
74 | ##] nqed. |
---|
75 | |
---|
76 | (* * Additionally, function definitions and function calls are annotated |
---|
77 | by function signatures indicating the number and types of arguments, |
---|
78 | as well as the type of the returned value if any. These signatures |
---|
79 | are used in particular to determine appropriate calling conventions |
---|
80 | for the function. *) |
---|
81 | |
---|
82 | nrecord signature : Type ≝ { |
---|
83 | sig_args: list typ; |
---|
84 | sig_res: option typ |
---|
85 | }. |
---|
86 | |
---|
87 | ndefinition proj_sig_res : signature → typ ≝ λs. |
---|
88 | match sig_res s with |
---|
89 | [ None ⇒ ASTint |
---|
90 | | Some t ⇒ t |
---|
91 | ]. |
---|
92 | |
---|
93 | (* Memory spaces *) |
---|
94 | |
---|
95 | ninductive region : Type ≝ |
---|
96 | | Any : region |
---|
97 | | Data : region |
---|
98 | | IData : region |
---|
99 | | PData : region |
---|
100 | | XData : region |
---|
101 | | Code : region. |
---|
102 | |
---|
103 | ndefinition eq_region : region → region → bool ≝ |
---|
104 | λr1,r2. |
---|
105 | match r1 with |
---|
106 | [ Any ⇒ match r2 with [ Any ⇒ true | _ ⇒ false ] |
---|
107 | | Data ⇒ match r2 with [ Data ⇒ true | _ ⇒ false ] |
---|
108 | | IData ⇒ match r2 with [ IData ⇒ true | _ ⇒ false ] |
---|
109 | | PData ⇒ match r2 with [ PData ⇒ true | _ ⇒ false ] |
---|
110 | | XData ⇒ match r2 with [ XData ⇒ true | _ ⇒ false ] |
---|
111 | | Code ⇒ match r2 with [ Code ⇒ true | _ ⇒ false ] |
---|
112 | ]. |
---|
113 | |
---|
114 | nlemma eq_region_elim : ∀P:bool → Type. ∀r1,r2. |
---|
115 | (r1 = r2 → P true) → (r1 ≠ r2 → P false) → |
---|
116 | P (eq_region r1 r2). |
---|
117 | #P r1 r2; ncases r1; ncases r2; #Ptrue Pfalse; |
---|
118 | ntry ( napply Ptrue // ); |
---|
119 | napply Pfalse; @; #E; ndestruct; |
---|
120 | nqed. |
---|
121 | |
---|
122 | ndefinition eq_region_dec : ∀r1,r2:region. (r1=r2)+(r1≠r2). |
---|
123 | #r1 r2; napply (eq_region_elim ? r1 r2); /2/; nqed. |
---|
124 | |
---|
125 | (* * Memory accesses (load and store instructions) are annotated by |
---|
126 | a ``memory chunk'' indicating the type, size and signedness of the |
---|
127 | chunk of memory being accessed. *) |
---|
128 | |
---|
129 | ninductive memory_chunk : Type[0] ≝ |
---|
130 | | Mint8signed : memory_chunk (*r 8-bit signed integer *) |
---|
131 | | Mint8unsigned : memory_chunk (*r 8-bit unsigned integer *) |
---|
132 | | Mint16signed : memory_chunk (*r 16-bit signed integer *) |
---|
133 | | Mint16unsigned : memory_chunk (*r 16-bit unsigned integer *) |
---|
134 | | Mint32 : memory_chunk (*r 32-bit integer, or pointer *) |
---|
135 | | Mfloat32 : memory_chunk (*r 32-bit single-precision float *) |
---|
136 | | Mfloat64 : memory_chunk (*r 64-bit double-precision float *) |
---|
137 | | Mpointer : region → memory_chunk. (* pointer addressing given region *) |
---|
138 | |
---|
139 | (* * Initialization data for global variables. *) |
---|
140 | |
---|
141 | ninductive init_data: Type[0] ≝ |
---|
142 | | Init_int8: int → init_data |
---|
143 | | Init_int16: int → init_data |
---|
144 | | Init_int32: int → init_data |
---|
145 | | Init_float32: float → init_data |
---|
146 | | Init_float64: float → init_data |
---|
147 | | Init_space: Z → init_data |
---|
148 | | Init_null: region → init_data |
---|
149 | | Init_addrof: ident → int → init_data (*r address of symbol + offset *) |
---|
150 | | Init_pointer: list init_data → init_data. |
---|
151 | |
---|
152 | (* * Whole programs consist of: |
---|
153 | - a collection of function definitions (name and description); |
---|
154 | - the name of the ``main'' function that serves as entry point in the program; |
---|
155 | - a collection of global variable declarations, consisting of |
---|
156 | a name, initialization data, and additional information. |
---|
157 | |
---|
158 | The type of function descriptions and that of additional information |
---|
159 | for variables vary among the various intermediate languages and are |
---|
160 | taken as parameters to the [program] type. The other parts of whole |
---|
161 | programs are common to all languages. *) |
---|
162 | |
---|
163 | nrecord program (F,V: Type) : Type := { |
---|
164 | prog_funct: list (ident × F); |
---|
165 | prog_main: ident; |
---|
166 | prog_vars: list (ident × (list init_data) × region × V) |
---|
167 | }. |
---|
168 | |
---|
169 | ndefinition prog_funct_names ≝ λF,V: Type. λp: program F V. |
---|
170 | map ?? (fst ident F) (prog_funct ?? p). |
---|
171 | |
---|
172 | ndefinition prog_var_names ≝ λF,V: Type. λp: program F V. |
---|
173 | map ?? (λx: ident × (list init_data) × region × V. fst ?? (fst ?? (fst ?? x))) (prog_vars ?? p). |
---|
174 | (* |
---|
175 | (** * Generic transformations over programs *) |
---|
176 | |
---|
177 | (** We now define a general iterator over programs that applies a given |
---|
178 | code transformation function to all function descriptions and leaves |
---|
179 | the other parts of the program unchanged. *) |
---|
180 | |
---|
181 | Section TRANSF_PROGRAM. |
---|
182 | |
---|
183 | Variable A B V: Type. |
---|
184 | Variable transf: A -> B. |
---|
185 | *) |
---|
186 | |
---|
187 | ndefinition transf_program : ∀A,B. (A → B) → list (ident × A) → list (ident × B) ≝ |
---|
188 | λA,B,transf,l. |
---|
189 | map ?? (λid_fn. 〈fst ?? id_fn, transf (snd ?? id_fn)〉) l. |
---|
190 | |
---|
191 | ndefinition transform_program : ∀A,B,V. (A → B) → program A V → program B V ≝ |
---|
192 | λA,B,V,transf,p. |
---|
193 | mk_program B V |
---|
194 | (transf_program ?? transf (prog_funct A V p)) |
---|
195 | (prog_main A V p) |
---|
196 | (prog_vars A V p). |
---|
197 | |
---|
198 | nlemma transform_program_function: |
---|
199 | ∀A,B,V,transf,p,i,tf. |
---|
200 | in_list ? 〈i, tf〉 (prog_funct ?? (transform_program A B V transf p)) → |
---|
201 | ∃f. in_list ? 〈i, f〉 (prog_funct ?? p) ∧ transf f = tf. |
---|
202 | nnormalize; #A B V transf p i tf H; nelim (list_in_map_inv ????? H); |
---|
203 | #x; nelim x; #i' tf'; *; #e H; ndestruct; @tf'; /2/; |
---|
204 | nqed. |
---|
205 | |
---|
206 | (* |
---|
207 | End TRANSF_PROGRAM. |
---|
208 | |
---|
209 | (** The following is a variant of [transform_program] where the |
---|
210 | code transformation function can fail and therefore returns an |
---|
211 | option type. *) |
---|
212 | |
---|
213 | Open Local Scope error_monad_scope. |
---|
214 | Open Local Scope string_scope. |
---|
215 | |
---|
216 | Section MAP_PARTIAL. |
---|
217 | |
---|
218 | Variable A B C: Type. |
---|
219 | Variable prefix_errmsg: A -> errmsg. |
---|
220 | Variable f: B -> res C. |
---|
221 | |
---|
222 | Fixpoint map_partial (l: list (A * B)) : res (list (A * C)) := |
---|
223 | match l with |
---|
224 | | nil => OK nil |
---|
225 | | (a, b) :: rem => |
---|
226 | match f b with |
---|
227 | | Error msg => Error (prefix_errmsg a ++ msg)%list |
---|
228 | | OK c => |
---|
229 | do rem' <- map_partial rem; |
---|
230 | OK ((a, c) :: rem') |
---|
231 | end |
---|
232 | end. |
---|
233 | |
---|
234 | Remark In_map_partial: |
---|
235 | forall l l' a c, |
---|
236 | map_partial l = OK l' -> |
---|
237 | In (a, c) l' -> |
---|
238 | exists b, In (a, b) l /\ f b = OK c. |
---|
239 | Proof. |
---|
240 | induction l; simpl. |
---|
241 | intros. inv H. elim H0. |
---|
242 | intros until c. destruct a as [a1 b1]. |
---|
243 | caseEq (f b1); try congruence. |
---|
244 | intro c1; intros. monadInv H0. |
---|
245 | elim H1; intro. inv H0. exists b1; auto. |
---|
246 | exploit IHl; eauto. intros [b [P Q]]. exists b; auto. |
---|
247 | Qed. |
---|
248 | |
---|
249 | Remark map_partial_forall2: |
---|
250 | forall l l', |
---|
251 | map_partial l = OK l' -> |
---|
252 | list_forall2 |
---|
253 | (fun (a_b: A * B) (a_c: A * C) => |
---|
254 | fst a_b = fst a_c /\ f (snd a_b) = OK (snd a_c)) |
---|
255 | l l'. |
---|
256 | Proof. |
---|
257 | induction l; simpl. |
---|
258 | intros. inv H. constructor. |
---|
259 | intro l'. destruct a as [a b]. |
---|
260 | caseEq (f b). 2: congruence. intro c; intros. monadInv H0. |
---|
261 | constructor. simpl. auto. auto. |
---|
262 | Qed. |
---|
263 | |
---|
264 | End MAP_PARTIAL. |
---|
265 | |
---|
266 | Remark map_partial_total: |
---|
267 | forall (A B C: Type) (prefix: A -> errmsg) (f: B -> C) (l: list (A * B)), |
---|
268 | map_partial prefix (fun b => OK (f b)) l = |
---|
269 | OK (List.map (fun a_b => (fst a_b, f (snd a_b))) l). |
---|
270 | Proof. |
---|
271 | induction l; simpl. |
---|
272 | auto. |
---|
273 | destruct a as [a1 b1]. rewrite IHl. reflexivity. |
---|
274 | Qed. |
---|
275 | |
---|
276 | Remark map_partial_identity: |
---|
277 | forall (A B: Type) (prefix: A -> errmsg) (l: list (A * B)), |
---|
278 | map_partial prefix (fun b => OK b) l = OK l. |
---|
279 | Proof. |
---|
280 | induction l; simpl. |
---|
281 | auto. |
---|
282 | destruct a as [a1 b1]. rewrite IHl. reflexivity. |
---|
283 | Qed. |
---|
284 | |
---|
285 | Section TRANSF_PARTIAL_PROGRAM. |
---|
286 | |
---|
287 | Variable A B V: Type. |
---|
288 | Variable transf_partial: A -> res B. |
---|
289 | |
---|
290 | Definition prefix_funct_name (id: ident) : errmsg := |
---|
291 | MSG "In function " :: CTX id :: MSG ": " :: nil. |
---|
292 | |
---|
293 | Definition transform_partial_program (p: program A V) : res (program B V) := |
---|
294 | do fl <- map_partial prefix_funct_name transf_partial p.(prog_funct); |
---|
295 | OK (mkprogram fl p.(prog_main) p.(prog_vars)). |
---|
296 | |
---|
297 | Lemma transform_partial_program_function: |
---|
298 | forall p tp i tf, |
---|
299 | transform_partial_program p = OK tp -> |
---|
300 | In (i, tf) tp.(prog_funct) -> |
---|
301 | exists f, In (i, f) p.(prog_funct) /\ transf_partial f = OK tf. |
---|
302 | Proof. |
---|
303 | intros. monadInv H. simpl in H0. |
---|
304 | eapply In_map_partial; eauto. |
---|
305 | Qed. |
---|
306 | |
---|
307 | Lemma transform_partial_program_main: |
---|
308 | forall p tp, |
---|
309 | transform_partial_program p = OK tp -> |
---|
310 | tp.(prog_main) = p.(prog_main). |
---|
311 | Proof. |
---|
312 | intros. monadInv H. reflexivity. |
---|
313 | Qed. |
---|
314 | |
---|
315 | Lemma transform_partial_program_vars: |
---|
316 | forall p tp, |
---|
317 | transform_partial_program p = OK tp -> |
---|
318 | tp.(prog_vars) = p.(prog_vars). |
---|
319 | Proof. |
---|
320 | intros. monadInv H. reflexivity. |
---|
321 | Qed. |
---|
322 | |
---|
323 | End TRANSF_PARTIAL_PROGRAM. |
---|
324 | |
---|
325 | (** The following is a variant of [transform_program_partial] where |
---|
326 | both the program functions and the additional variable information |
---|
327 | are transformed by functions that can fail. *) |
---|
328 | |
---|
329 | Section TRANSF_PARTIAL_PROGRAM2. |
---|
330 | |
---|
331 | Variable A B V W: Type. |
---|
332 | Variable transf_partial_function: A -> res B. |
---|
333 | Variable transf_partial_variable: V -> res W. |
---|
334 | |
---|
335 | Definition prefix_var_name (id_init: ident * list init_data) : errmsg := |
---|
336 | MSG "In global variable " :: CTX (fst id_init) :: MSG ": " :: nil. |
---|
337 | |
---|
338 | Definition transform_partial_program2 (p: program A V) : res (program B W) := |
---|
339 | do fl <- map_partial prefix_funct_name transf_partial_function p.(prog_funct); |
---|
340 | do vl <- map_partial prefix_var_name transf_partial_variable p.(prog_vars); |
---|
341 | OK (mkprogram fl p.(prog_main) vl). |
---|
342 | |
---|
343 | Lemma transform_partial_program2_function: |
---|
344 | forall p tp i tf, |
---|
345 | transform_partial_program2 p = OK tp -> |
---|
346 | In (i, tf) tp.(prog_funct) -> |
---|
347 | exists f, In (i, f) p.(prog_funct) /\ transf_partial_function f = OK tf. |
---|
348 | Proof. |
---|
349 | intros. monadInv H. |
---|
350 | eapply In_map_partial; eauto. |
---|
351 | Qed. |
---|
352 | |
---|
353 | Lemma transform_partial_program2_variable: |
---|
354 | forall p tp i tv, |
---|
355 | transform_partial_program2 p = OK tp -> |
---|
356 | In (i, tv) tp.(prog_vars) -> |
---|
357 | exists v, In (i, v) p.(prog_vars) /\ transf_partial_variable v = OK tv. |
---|
358 | Proof. |
---|
359 | intros. monadInv H. |
---|
360 | eapply In_map_partial; eauto. |
---|
361 | Qed. |
---|
362 | |
---|
363 | Lemma transform_partial_program2_main: |
---|
364 | forall p tp, |
---|
365 | transform_partial_program2 p = OK tp -> |
---|
366 | tp.(prog_main) = p.(prog_main). |
---|
367 | Proof. |
---|
368 | intros. monadInv H. reflexivity. |
---|
369 | Qed. |
---|
370 | |
---|
371 | End TRANSF_PARTIAL_PROGRAM2. |
---|
372 | |
---|
373 | (** The following is a relational presentation of |
---|
374 | [transform_program_partial2]. Given relations between function |
---|
375 | definitions and between variable information, it defines a relation |
---|
376 | between programs stating that the two programs have the same shape |
---|
377 | (same global names, etc) and that identically-named function definitions |
---|
378 | are variable information are related. *) |
---|
379 | |
---|
380 | Section MATCH_PROGRAM. |
---|
381 | |
---|
382 | Variable A B V W: Type. |
---|
383 | Variable match_fundef: A -> B -> Prop. |
---|
384 | Variable match_varinfo: V -> W -> Prop. |
---|
385 | |
---|
386 | Definition match_funct_entry (x1: ident * A) (x2: ident * B) := |
---|
387 | match x1, x2 with |
---|
388 | | (id1, fn1), (id2, fn2) => id1 = id2 /\ match_fundef fn1 fn2 |
---|
389 | end. |
---|
390 | |
---|
391 | Definition match_var_entry (x1: ident * list init_data * V) (x2: ident * list init_data * W) := |
---|
392 | match x1, x2 with |
---|
393 | | (id1, init1, info1), (id2, init2, info2) => id1 = id2 /\ init1 = init2 /\ match_varinfo info1 info2 |
---|
394 | end. |
---|
395 | |
---|
396 | Definition match_program (p1: program A V) (p2: program B W) : Prop := |
---|
397 | list_forall2 match_funct_entry p1.(prog_funct) p2.(prog_funct) |
---|
398 | /\ p1.(prog_main) = p2.(prog_main) |
---|
399 | /\ list_forall2 match_var_entry p1.(prog_vars) p2.(prog_vars). |
---|
400 | |
---|
401 | End MATCH_PROGRAM. |
---|
402 | |
---|
403 | Remark transform_partial_program2_match: |
---|
404 | forall (A B V W: Type) |
---|
405 | (transf_partial_function: A -> res B) |
---|
406 | (transf_partial_variable: V -> res W) |
---|
407 | (p: program A V) (tp: program B W), |
---|
408 | transform_partial_program2 transf_partial_function transf_partial_variable p = OK tp -> |
---|
409 | match_program |
---|
410 | (fun fd tfd => transf_partial_function fd = OK tfd) |
---|
411 | (fun info tinfo => transf_partial_variable info = OK tinfo) |
---|
412 | p tp. |
---|
413 | Proof. |
---|
414 | intros. monadInv H. split. |
---|
415 | apply list_forall2_imply with |
---|
416 | (fun (ab: ident * A) (ac: ident * B) => |
---|
417 | fst ab = fst ac /\ transf_partial_function (snd ab) = OK (snd ac)). |
---|
418 | eapply map_partial_forall2. eauto. |
---|
419 | intros. destruct v1; destruct v2; simpl in *. auto. |
---|
420 | split. auto. |
---|
421 | apply list_forall2_imply with |
---|
422 | (fun (ab: ident * list init_data * V) (ac: ident * list init_data * W) => |
---|
423 | fst ab = fst ac /\ transf_partial_variable (snd ab) = OK (snd ac)). |
---|
424 | eapply map_partial_forall2. eauto. |
---|
425 | intros. destruct v1; destruct v2; simpl in *. destruct p0; destruct p1. intuition congruence. |
---|
426 | Qed. |
---|
427 | *) |
---|
428 | (* * * External functions *) |
---|
429 | |
---|
430 | (* * For most languages, the functions composing the program are either |
---|
431 | internal functions, defined within the language, or external functions |
---|
432 | (a.k.a. system calls) that emit an event when applied. We define |
---|
433 | a type for such functions and some generic transformation functions. *) |
---|
434 | |
---|
435 | nrecord external_function : Type ≝ { |
---|
436 | ef_id: ident; |
---|
437 | ef_sig: signature |
---|
438 | }. |
---|
439 | (* |
---|
440 | ninductive fundef (F: Type): Type ≝ |
---|
441 | | Internal: F → fundef F |
---|
442 | | External: external_function → fundef F. |
---|
443 | |
---|
444 | (* Implicit Arguments External [F]. *) |
---|
445 | (* |
---|
446 | Section TRANSF_FUNDEF. |
---|
447 | |
---|
448 | Variable A B: Type. |
---|
449 | Variable transf: A -> B. |
---|
450 | *) |
---|
451 | ndefinition transf_fundef : ∀A,B. (A→B) → fundef A → fundef B ≝ |
---|
452 | λA,B,transf,fd. |
---|
453 | match fd with |
---|
454 | [ Internal f ⇒ Internal ? (transf f) |
---|
455 | | External ef ⇒ External ? ef |
---|
456 | ]. |
---|
457 | *) |
---|
458 | (* |
---|
459 | End TRANSF_FUNDEF. |
---|
460 | |
---|
461 | Section TRANSF_PARTIAL_FUNDEF. |
---|
462 | |
---|
463 | Variable A B: Type. |
---|
464 | Variable transf_partial: A -> res B. |
---|
465 | |
---|
466 | Definition transf_partial_fundef (fd: fundef A): res (fundef B) := |
---|
467 | match fd with |
---|
468 | | Internal f => do f' <- transf_partial f; OK (Internal f') |
---|
469 | | External ef => OK (External ef) |
---|
470 | end. |
---|
471 | |
---|
472 | End TRANSF_PARTIAL_FUNDEF. |
---|
473 | *) |
---|