1 | (* *********************************************************************) |
---|
2 | (* *) |
---|
3 | (* The Compcert verified compiler *) |
---|
4 | (* *) |
---|
5 | (* Xavier Leroy, INRIA Paris-Rocquencourt *) |
---|
6 | (* *) |
---|
7 | (* Copyright Institut National de Recherche en Informatique et en *) |
---|
8 | (* Automatique. All rights reserved. This file is distributed *) |
---|
9 | (* under the terms of the GNU General Public License as published by *) |
---|
10 | (* the Free Software Foundation, either version 2 of the License, or *) |
---|
11 | (* (at your option) any later version. This file is also distributed *) |
---|
12 | (* under the terms of the INRIA Non-Commercial License Agreement. *) |
---|
13 | (* *) |
---|
14 | (* *********************************************************************) |
---|
15 | |
---|
16 | (* * Axiomatization of floating-point numbers. *) |
---|
17 | |
---|
18 | (* * In contrast with what we do with machine integers, we do not bother |
---|
19 | to formalize precisely IEEE floating-point arithmetic. Instead, we |
---|
20 | simply axiomatize a type [float] for IEEE double-precision floats |
---|
21 | and the associated operations. *) |
---|
22 | |
---|
23 | include "Coqlib.ma". |
---|
24 | include "Integers.ma". |
---|
25 | |
---|
26 | naxiom float: Type. |
---|
27 | |
---|
28 | (*Module Float.*) |
---|
29 | |
---|
30 | naxiom Fzero: float. |
---|
31 | naxiom Fone: float. |
---|
32 | |
---|
33 | naxiom Fneg: float → float. |
---|
34 | naxiom Fabs: float → float. |
---|
35 | naxiom singleoffloat: float → float. |
---|
36 | naxiom intoffloat: float → int. |
---|
37 | naxiom intuoffloat: float → int. |
---|
38 | naxiom floatofint: int → float. |
---|
39 | naxiom floatofintu: int → float. |
---|
40 | |
---|
41 | naxiom Fadd: float → float → float. |
---|
42 | naxiom Fsub: float → float → float. |
---|
43 | naxiom Fmul: float → float → float. |
---|
44 | naxiom Fdiv: float → float → float. |
---|
45 | |
---|
46 | naxiom Fcmp: comparison → float → float → bool. |
---|
47 | |
---|
48 | naxiom eq_dec: ∀f1,f2: float. (f1 = f2) + (f1 ≠ f2). |
---|
49 | |
---|
50 | (* * Below are the only properties of floating-point arithmetic that we |
---|
51 | rely on in the compiler proof. *) |
---|
52 | |
---|
53 | naxiom addf_commut: ∀f1,f2. Fadd f1 f2 = Fadd f2 f1. |
---|
54 | |
---|
55 | naxiom subf_addf_opp: ∀f1,f2. Fsub f1 f2 = Fadd f1 (Fneg f2). |
---|
56 | |
---|
57 | naxiom singleoffloat_idem: |
---|
58 | ∀f. singleoffloat (singleoffloat f) = singleoffloat f. |
---|
59 | |
---|
60 | naxiom Fcmp_ne_eq: |
---|
61 | ∀ f1,f2. Fcmp Cne f1 f2 = ¬(Fcmp Ceq f1 f2). |
---|
62 | naxiom Fcmp_le_lt_eq: |
---|
63 | ∀ f1,f2. Fcmp Cle f1 f2 = (Fcmp Clt f1 f2 ∨ Fcmp Ceq f1 f2). |
---|
64 | naxiom Fcmp_ge_gt_eq: |
---|
65 | ∀f1,f2. Fcmp Cge f1 f2 = (Fcmp Cgt f1 f2 ∨ Fcmp Ceq f1 f2). |
---|
66 | |
---|
67 | naxiom Feq_zero_true: Fcmp Ceq Fzero Fzero = true. |
---|
68 | naxiom Feq_zero_false: ∀f. f ≠ Fzero → Fcmp Ceq f Fzero = false. |
---|
69 | |
---|
70 | (*End Float.*) |
---|