1 | |
---|
2 | include "Csem.ma". |
---|
3 | |
---|
4 | include "extralib.ma". |
---|
5 | |
---|
6 | (* Some experimental definitions for an executable semantics. *) |
---|
7 | |
---|
8 | ndefinition bool_of_val_1 : val → type → res val ≝ |
---|
9 | λv,ty. match v with |
---|
10 | [ Vint i ⇒ match ty with |
---|
11 | [ Tint _ _ ⇒ OK ? (of_bool (¬eq i zero)) |
---|
12 | | Tpointer _ ⇒ OK ? (of_bool (¬eq i zero)) |
---|
13 | | _ ⇒ Error ? |
---|
14 | ] |
---|
15 | | Vfloat f ⇒ match ty with |
---|
16 | [ Tfloat _ ⇒ OK ? (of_bool (¬Fcmp Ceq f Fzero)) |
---|
17 | | _ ⇒ Error ? |
---|
18 | ] |
---|
19 | | Vptr _ _ ⇒ match ty with |
---|
20 | [ Tint _ _ ⇒ OK ? Vtrue |
---|
21 | | Tpointer _ ⇒ OK ? Vtrue |
---|
22 | | _ ⇒ Error ? |
---|
23 | ] |
---|
24 | | _ ⇒ Error ? |
---|
25 | ]. |
---|
26 | |
---|
27 | (* There's a lot more repetition than I'd like here, in large part because |
---|
28 | there's no way to introduce different numbers of hypotheses when doing the |
---|
29 | case distinctions. *) |
---|
30 | |
---|
31 | nlemma bool_of_val_1_ok : ∀v,ty,r. bool_of_val_1 v ty = OK ? r ↔ bool_of_val v ty r. |
---|
32 | #v ty r; @; |
---|
33 | ##[ |
---|
34 | nelim v; ##[ #H; nnormalize in H; ndestruct; ##| ##2,3: #x; ##| ##4: #x y; ##] |
---|
35 | ncases ty; |
---|
36 | ##[ ##1,10,19: #H; nnormalize in H; ndestruct; |
---|
37 | ##| #i s; nwhd in ⊢ (??%? → ?); nelim (eq_dec x zero); #H; |
---|
38 | ##[ nrewrite > H; nrewrite > (eq_true …); #H'; |
---|
39 | ncut (r = Vfalse); ##[ nwhd in H':(??(??%)?); ndestruct;//;##] |
---|
40 | #H''; nrewrite > H''; /2/; |
---|
41 | ##| nrewrite > (eq_false …); //; #H'; |
---|
42 | ncut (r = Vtrue); ##[ nwhd in H':(??(??%)?); ndestruct;//;##] |
---|
43 | #H''; nrewrite > H''; /3/; |
---|
44 | ##] |
---|
45 | ##|##3,9,13,18,21,27: #x H; nnormalize in H; ndestruct; |
---|
46 | ##| #t; nwhd in ⊢ (??%? → ?); nelim (eq_dec x zero); #H; |
---|
47 | ##[ nrewrite > H; nrewrite > (eq_true …); #H'; |
---|
48 | ncut (r = Vfalse); ##[ nwhd in H':(??(??%)?); ndestruct;//;##] |
---|
49 | #H''; nrewrite > H''; /2/; |
---|
50 | ##| nrewrite > (eq_false …); //; #H'; |
---|
51 | ncut (r = Vtrue); ##[ nwhd in H':(??(??%)?); ndestruct;//;##] |
---|
52 | #H''; nrewrite > H''; /3/; |
---|
53 | ##] |
---|
54 | ##| ##5,6,7,8,11,14,15,16,17,23,24,25,26: #a b H; nnormalize in H; ndestruct; |
---|
55 | ##| #f; nwhd in ⊢ (??%? → ?); nelim (eq_dec x Fzero); #H; |
---|
56 | ##[ nrewrite > H; nrewrite > (Feq_zero_true …); #H'; |
---|
57 | ncut (r = Vfalse); ##[ nwhd in H':(??(??%)?); ndestruct;//;##] |
---|
58 | #H''; nrewrite > H''; /2/; |
---|
59 | ##| nrewrite > (Feq_zero_false …); //; #H'; |
---|
60 | ncut (r = Vtrue); ##[ nwhd in H':(??(??%)?); ndestruct;//;##] |
---|
61 | #H''; nrewrite > H''; /3/; |
---|
62 | ##] |
---|
63 | ##| #i s H; nwhd in H:(??%?); |
---|
64 | ncut (r = Vtrue); ##[ nwhd in H:(??(??%)?); ndestruct;//;##] |
---|
65 | #H'; nrewrite > H'; /2/; |
---|
66 | ##| #t H; nwhd in H:(??%?); |
---|
67 | ncut (r = Vtrue); ##[ nwhd in H:(??(??%)?); ndestruct;//;##] |
---|
68 | #H'; nrewrite > H'; /2/; |
---|
69 | ##] |
---|
70 | ##| #H; nelim H; #v t H'; nelim H'; |
---|
71 | ##[ #i is s ne; nwhd in ⊢ (??%?); nrewrite > (eq_false … ne); //; |
---|
72 | ##| ##2,4: // |
---|
73 | ##| #i t ne; nwhd in ⊢ (??%?); nrewrite > (eq_false … ne); //; |
---|
74 | ##| #f s ne; nwhd in ⊢ (??%?); nrewrite > (Feq_zero_false … ne); //; |
---|
75 | ##| #i s; nwhd in ⊢ (??%?); nrewrite > (eq_true …); //; |
---|
76 | ##| #t; nwhd in ⊢ (??%?); nrewrite > (eq_true …); //; |
---|
77 | ##| #s; nwhd in ⊢ (??%?); nrewrite > (Feq_zero_true …); //; |
---|
78 | ##] |
---|
79 | ##] nqed. |
---|
80 | |
---|
81 | include "Plogic/russell_support.ma". |
---|
82 | |
---|
83 | (* Nicer - we still have to deal with all of the cases, but only need to |
---|
84 | introduce the result value, so there's a single case for getting rid of |
---|
85 | all the Error goals. *) |
---|
86 | |
---|
87 | ndefinition bool_of_val_2 : ∀v:val. ∀ty:type. { r : res bool | ∀r'. r = OK ? r' → bool_of_val v ty (of_bool r') } ≝ |
---|
88 | λv,ty. match v in val with |
---|
89 | [ Vint i ⇒ match ty with |
---|
90 | [ Tint _ _ ⇒ Some ? (OK ? (¬eq i zero)) |
---|
91 | | Tpointer _ ⇒ Some ? (OK ? (¬eq i zero)) |
---|
92 | | _ ⇒ Some ? (Error ?) |
---|
93 | ] |
---|
94 | | Vfloat f ⇒ match ty with |
---|
95 | [ Tfloat _ ⇒ Some ? (OK ? (¬Fcmp Ceq f Fzero)) |
---|
96 | | _ ⇒ Some ? (Error ?) |
---|
97 | ] |
---|
98 | | Vptr _ _ ⇒ match ty with |
---|
99 | [ Tint _ _ ⇒ Some ? (OK ? true) |
---|
100 | | Tpointer _ ⇒ Some ? (OK ? true) |
---|
101 | | _ ⇒ Some ? (Error ?) |
---|
102 | ] |
---|
103 | | _ ⇒ Some ? (Error ?) |
---|
104 | ]. nwhd; |
---|
105 | ##[ ##3,5: #r; nlapply (eq_spec c0 zero); nelim (eq c0 zero); |
---|
106 | ##[ ##1,3: #e H; nrewrite > (?:of_bool r=Vfalse); ##[ ##2,4: ndestruct; // ##] nrewrite > e; /3/; |
---|
107 | ##| ##2,4: #ne H; nrewrite > (?:of_bool r=Vtrue); ##[ ##2,4: ndestruct; // ##] /3/; |
---|
108 | ##] |
---|
109 | ##| ##13: #r; nelim (eq_dec c0 Fzero); |
---|
110 | ##[ #e; nrewrite > e; nrewrite > (Feq_zero_true …); #H; nrewrite > (?:of_bool r=Vfalse); ##[ ##2: ndestruct; // ##] /2/; |
---|
111 | ##| #ne; nrewrite > (Feq_zero_false …); //; #H; |
---|
112 | nrewrite > (?:of_bool r=Vtrue); ##[ ##2: ndestruct; // ##] /3/; |
---|
113 | ##] |
---|
114 | ##| ##21,23: #r H; nrewrite > (?:of_bool r = Vtrue); ##[ ##2,4: ndestruct; // ##] /2/ |
---|
115 | ##| ##*: #a b; ndestruct; |
---|
116 | ##] nqed. |
---|
117 | |
---|
118 | (* Same as before, except we have to write eject in because the type for the |
---|
119 | equality is left implied, so the coercion isn't used. *) |
---|
120 | |
---|
121 | nlemma bool_of_val_2_complete : ∀v,ty,r. |
---|
122 | bool_of_val v ty r → |
---|
123 | ∃b. r = of_bool b ∧ eject ?? (bool_of_val_2 v ty) = OK ? b. |
---|
124 | #v ty r H; nelim H; #v t H'; nelim H'; |
---|
125 | ##[ #i is s ne; @ true; @; //; nwhd in ⊢ (??%?); nrewrite > (eq_false … ne); //; |
---|
126 | ##| #b i i0 s; @ true; @; // |
---|
127 | ##| #i t ne; @ true; @; //; nwhd in ⊢ (??%?); nrewrite > (eq_false … ne); //; |
---|
128 | ##| #b i t0; @ true; @; // |
---|
129 | ##| #f s ne; @ true; @; //; nwhd in ⊢ (??%?); nrewrite > (Feq_zero_false … ne); //; |
---|
130 | ##| #i s; @ false; @; //; (*nwhd in ⊢ (??%?); nrewrite > (eq_true …); //;*) |
---|
131 | ##| #t; @ false; @; //; (*nwhd in ⊢ (??%?); nrewrite > (eq_true …); //;*) |
---|
132 | ##| #s; @ false; @; //; nwhd in ⊢ (??%?); nrewrite > (Feq_zero_true …); //; |
---|
133 | ##] |
---|
134 | nqed. |
---|
135 | |
---|
136 | |
---|
137 | (* Nicer again (after the extra definitions). Just use sigma type rather than |
---|
138 | the subset, but take into account the error monad. The error cases all |
---|
139 | become trivial and we don't have to muck around to get the result. *) |
---|
140 | |
---|
141 | ndefinition P_to_P_option_res : ∀A:Type[0].∀P:A → CProp[0].option (res A) → CProp[0] ≝ |
---|
142 | λA,P,a.match a with [ None ⇒ False | Some y ⇒ match y return λ_.CProp[0] with [ Error ⇒ True | OK z ⇒ P z ]]. |
---|
143 | |
---|
144 | ndefinition err_inject : ∀A.∀P:A → Prop.∀a:option (res A).∀p:P_to_P_option_res A P a.res (sigma A P) ≝ |
---|
145 | λA.λP:A → Prop.λa:option (res A).λp:P_to_P_option_res A P a. |
---|
146 | (match a return λa'.a=a' → res (sigma A P) with |
---|
147 | [ None ⇒ λe1.? |
---|
148 | | Some b ⇒ λe1.(match b return λb'.b=b' → ? with |
---|
149 | [ Error ⇒ λ_. Error ? |
---|
150 | | OK c ⇒ λe2. OK ? (sig_intro A P c ?) |
---|
151 | ]) (refl ? b) |
---|
152 | ]) (refl ? a). |
---|
153 | ##[ nrewrite > e1 in p; nnormalize; *; |
---|
154 | ##| nrewrite > e1 in p; nrewrite > e2; nnormalize; // |
---|
155 | ##] nqed. |
---|
156 | |
---|
157 | ndefinition err_eject : ∀A.∀P: A → Prop. res (sigma A P) → res A ≝ |
---|
158 | λA,P,a.match a with [ Error ⇒ Error ? | OK b ⇒ |
---|
159 | match b with [ sig_intro w p ⇒ OK ? w] ]. |
---|
160 | |
---|
161 | ndefinition sig_eject : ∀A.∀P: A → Prop. sigma A P → A ≝ |
---|
162 | λA,P,a.match a with [ sig_intro w p ⇒ w]. |
---|
163 | |
---|
164 | ncoercion err_inject : |
---|
165 | ∀A.∀P:A → Prop.∀a.∀p:P_to_P_option_res ? P a.res (sigma A P) ≝ err_inject |
---|
166 | on a:option (res ?) to res (sigma ? ?). |
---|
167 | ncoercion err_eject : ∀A.∀P:A → Prop.∀c:res (sigma A P).res A ≝ err_eject |
---|
168 | on _c:res (sigma ? ?) to res ?. |
---|
169 | ncoercion sig_eject : ∀A.∀P:A → Prop.∀c:sigma A P.A ≝ sig_eject |
---|
170 | on _c:sigma ? ? to ?. |
---|
171 | |
---|
172 | ndefinition bool_of_val_3 : ∀v:val. ∀ty:type. res (Σr:bool. bool_of_val v ty (of_bool r)) ≝ |
---|
173 | λv,ty. match v in val with |
---|
174 | [ Vint i ⇒ match ty with |
---|
175 | [ Tint _ _ ⇒ Some ? (OK ? (¬eq i zero)) |
---|
176 | | Tpointer _ ⇒ Some ? (OK ? (¬eq i zero)) |
---|
177 | | _ ⇒ Some ? (Error ?) |
---|
178 | ] |
---|
179 | | Vfloat f ⇒ match ty with |
---|
180 | [ Tfloat _ ⇒ Some ? (OK ? (¬Fcmp Ceq f Fzero)) |
---|
181 | | _ ⇒ Some ? (Error ?) |
---|
182 | ] |
---|
183 | | Vptr _ _ ⇒ match ty with |
---|
184 | [ Tint _ _ ⇒ Some ? (OK ? true) |
---|
185 | | Tpointer _ ⇒ Some ? (OK ? true) |
---|
186 | | _ ⇒ Some ? (Error ?) |
---|
187 | ] |
---|
188 | | _ ⇒ Some ? (Error ?) |
---|
189 | ]. nwhd; //; |
---|
190 | ##[ ##1,2: nlapply (eq_spec c0 zero); nelim (eq c0 zero); |
---|
191 | ##[ ##1,3: #e; nrewrite > e; napply bool_of_val_false; //; |
---|
192 | ##| ##2,4: #ne; napply bool_of_val_true; /2/; |
---|
193 | ##] |
---|
194 | ##| nelim (eq_dec c0 Fzero); |
---|
195 | ##[ #e; nrewrite > e; nrewrite > (Feq_zero_true …); napply bool_of_val_false; //; |
---|
196 | ##| #ne; nrewrite > (Feq_zero_false …); //; napply bool_of_val_true; /2/; |
---|
197 | ##] |
---|
198 | ##| ##4,5: napply bool_of_val_true; // |
---|
199 | ##] nqed. |
---|
200 | |
---|
201 | ndefinition err_eq ≝ λA,P. λx:res (sigma A P). λy:A. |
---|
202 | match x with [ Error ⇒ False | OK x' ⇒ |
---|
203 | match x' with [ sig_intro x'' _ ⇒ x'' = y ]]. |
---|
204 | (* TODO: can I write a coercion for the above? *) |
---|
205 | |
---|
206 | (* Same as before, except we have to use a slightly different "equality". *) |
---|
207 | |
---|
208 | nlemma bool_of_val_3_complete : ∀v,ty,r. bool_of_val v ty r → ∃b. r = of_bool b ∧ err_eq ?? (bool_of_val_3 v ty) b. |
---|
209 | #v ty r H; nelim H; #v t H'; nelim H'; |
---|
210 | ##[ #i is s ne; @ true; @; //; nwhd; nrewrite > (eq_false … ne); //; |
---|
211 | ##| #b i i0 s; @ true; @; // |
---|
212 | ##| #i t ne; @ true; @; //; nwhd; nrewrite > (eq_false … ne); //; |
---|
213 | ##| #b i t0; @ true; @; // |
---|
214 | ##| #f s ne; @ true; @; //; nwhd; nrewrite > (Feq_zero_false … ne); //; |
---|
215 | ##| #i s; @ false; @; //; (*nwhd; nrewrite > (eq_true …); //;*) |
---|
216 | ##| #t; @ false; @; //; (*nwhd; nrewrite > (eq_true …); //;*) |
---|
217 | ##| #s; @ false; @; //; nwhd; nrewrite > (Feq_zero_true …); //; |
---|
218 | ##] |
---|
219 | nqed. |
---|
220 | |
---|
221 | (* Prove a few minor results to make proof obligations easy. *) |
---|
222 | |
---|
223 | nlemma bind_assoc_r: ∀A,B,C,e,f,g. |
---|
224 | bind B C (bind A B e f) g = bind A C e (λx.bind B C (f x) g). |
---|
225 | #A B C e f g; ncases e; nnormalize; //; nqed. |
---|
226 | |
---|
227 | nlemma bind_OK: ∀A,B,P,e,f. |
---|
228 | (∀v. e = OK A v → match f v with [ Error ⇒ True | OK v' ⇒ P v' ]) → |
---|
229 | match bind A B e f with [ Error ⇒ True | OK v ⇒ P v ]. |
---|
230 | #A B P e f; nelim e; /2/; nqed. |
---|
231 | |
---|
232 | nlemma sig_bind_OK: ∀A,B. ∀P:A → Prop. ∀P':B → Prop. ∀e:res (sigma A P). ∀f:sigma A P → res B. |
---|
233 | (∀v:A. err_eq A P e v → ∀p:P v. match f (sig_intro A P v p) with [ Error ⇒ True | OK v' ⇒ P' v'] ) → |
---|
234 | match bind (sigma A P) B e f with [ Error ⇒ True | OK v' ⇒ P' v' ]. |
---|
235 | #A B P P' e f; nelim e; //; |
---|
236 | #v0; nelim v0; #v Hv IH; napply IH; //; nqed. |
---|
237 | |
---|
238 | nlemma bind2_OK: ∀A,B,C,P,e,f. |
---|
239 | (∀v1,v2. e = OK ? 〈v1,v2〉 → match f v1 v2 with [ Error ⇒ True | OK v' ⇒ P v' ]) → |
---|
240 | match bind2 A B C e f with [ Error ⇒ True | OK v ⇒ P v ]. |
---|
241 | #A B C P e f; nelim e; //; #v; ncases v; /2/; nqed. |
---|
242 | |
---|
243 | nlemma sig_bind2_OK: ∀A,B,C. ∀P:A×B → Prop. ∀P':C → Prop. ∀e:res (sigma (A×B) P). ∀f:A → B → res C. |
---|
244 | (∀v1:A.∀v2:B. P 〈v1,v2〉 → match f v1 v2 with [ Error ⇒ True | OK v' ⇒ P' v'] ) → |
---|
245 | match bind2 A B C e f with [ Error ⇒ True | OK v' ⇒ P' v' ]. |
---|
246 | #A B C P P' e f; nelim e; //; |
---|
247 | #v0; nelim v0; #v; nelim v; #v1 v2 Hv IH; napply IH; //; nqed. |
---|
248 | |
---|
249 | nlemma reinject: ∀A. ∀P,P':A → Prop. ∀e:res (sigma A P'). |
---|
250 | (∀v:A. err_eq A P' e v → P' v → P v) → |
---|
251 | match err_eject A P' e with [ Error ⇒ True | OK v' ⇒ P v' ]. |
---|
252 | #A P P' e; ncases e; //; |
---|
253 | #v0; nelim v0; #v Pv' IH; /2/; |
---|
254 | nqed. |
---|
255 | |
---|
256 | nlemma bool_val_distinct: Vtrue ≠ Vfalse. |
---|
257 | @; #H; nwhd in H:(??%%); ndestruct; napply (absurd ? e0 one_not_zero); |
---|
258 | nqed. |
---|
259 | |
---|
260 | nlemma bool_of: ∀v,ty,b. bool_of_val v ty (of_bool b) → |
---|
261 | if b then is_true v ty else is_false v ty. |
---|
262 | #v ty b; ncases b; #H; ninversion H; #v' ty' H' ev et ev; //; |
---|
263 | napply False_ind; napply (absurd ? ev ?); |
---|
264 | ##[ ##2: napply sym_neq ##] napply bool_val_distinct; |
---|
265 | nqed. |
---|
266 | |
---|
267 | ndefinition opt_to_res ≝ λA.λv:option A. match v with [ None ⇒ Error A | Some v ⇒ OK A v ]. |
---|
268 | nlemma opt_OK: ∀A,P,e. |
---|
269 | (∀v. e = Some ? v → P v) → |
---|
270 | match opt_to_res A e with [ Error ⇒ True | OK v ⇒ P v ]. |
---|
271 | #A P e; nelim e; /2/; |
---|
272 | nqed. |
---|
273 | |
---|
274 | nlemma opt_bind_OK: ∀A,B,P,e,f. |
---|
275 | (∀v. e = Some A v → match f v with [ Error ⇒ True | OK v' ⇒ P v' ]) → |
---|
276 | match bind A B (opt_to_res A e) f with [ Error ⇒ True | OK v ⇒ P v ]. |
---|
277 | #A B P e f; nelim e; nnormalize; /2/; nqed. |
---|
278 | |
---|
279 | nlemma extract_subset_pair: ∀A,B,C,P. ∀e:{e:A×B | P e}. ∀Q:A→B→res C. ∀R:C→Prop. |
---|
280 | (∀a,b. eject ?? e = 〈a,b〉 → P 〈a,b〉 → match Q a b with [ OK v ⇒ R v | Error ⇒ True]) → |
---|
281 | match match eject ?? e with [ mk_pair a b ⇒ Q a b ] with [ OK v ⇒ R v | Error ⇒ True ]. |
---|
282 | #A B C P e Q R; ncases e; #e'; ncases e'; nnormalize; |
---|
283 | ##[ #H; napply (False_ind … H); |
---|
284 | ##| #e''; ncases e''; #a b Pab H; nnormalize; /2/; |
---|
285 | ##] nqed. |
---|
286 | |
---|
287 | nlet rec is_neutral_cast (ty:type) : res (Σu:unit.neutral_for_cast ty) ≝ |
---|
288 | match ty with |
---|
289 | [ Tint sz _ ⇒ match sz with [ I32 ⇒ Some ? (OK ? something) | _ ⇒ Some ? (Error ?) ] |
---|
290 | | Tpointer _ ⇒ Some ? (OK ? something) |
---|
291 | | Tarray _ _ ⇒ Some ? (OK ? something) |
---|
292 | | Tfunction _ _ ⇒ Some ? (OK ? something) |
---|
293 | | _ ⇒ Some ? (Error ?) |
---|
294 | ]. nwhd; //; nqed. |
---|
295 | (* |
---|
296 | nremark err_later: ∀A,B. ∀e:res A. match e with [ Error ⇒ Error B | OK v ⇒ Error B ] = Error B. |
---|
297 | #A B e; ncases e; //; nqed. |
---|
298 | *) |
---|
299 | |
---|
300 | nlet rec exec_cast (v:val) (ty:type) (ty':type) : res (Σv':val. cast v ty ty' v') ≝ |
---|
301 | match v with |
---|
302 | [ Vint i ⇒ |
---|
303 | match ty with |
---|
304 | [ Tint sz1 si1 ⇒ |
---|
305 | match ty' with |
---|
306 | [ Tint sz2 si2 ⇒ Some ? (OK ? (Vint (cast_int_int sz2 si2 i))) |
---|
307 | | Tfloat sz2 ⇒ Some ? (OK ? (Vfloat (cast_float_float sz2 (cast_int_float si1 i)))) |
---|
308 | (* no change in data repr *) |
---|
309 | | _ ⇒ Some ? (u ← is_neutral_cast ty;: u' ← is_neutral_cast ty';: OK ? (Vint i)) |
---|
310 | ] |
---|
311 | | _ ⇒ Some ? (u ← is_neutral_cast ty;: u' ← is_neutral_cast ty';: OK ? (Vint i)) |
---|
312 | ] |
---|
313 | | Vfloat f ⇒ |
---|
314 | match ty with |
---|
315 | [ Tfloat sz ⇒ |
---|
316 | match ty' with |
---|
317 | [ Tint sz' si' ⇒ Some ? (OK ? (Vint (cast_int_int sz' si' (cast_float_int si' f)))) |
---|
318 | | Tfloat sz' ⇒ Some ? (OK ? (Vfloat (cast_float_float sz' f))) |
---|
319 | | _ ⇒ Some ? (Error ?) |
---|
320 | ] |
---|
321 | | _ ⇒ Some ? (Error ?) |
---|
322 | ] |
---|
323 | | Vptr b ofs ⇒ Some ? (u ← is_neutral_cast ty;: u' ← is_neutral_cast ty';: OK ? (Vptr b ofs)) |
---|
324 | | _ ⇒ Some ? (Error ?) |
---|
325 | ]. ndestruct; /2/; |
---|
326 | ##[ ##1,2,3: ncases c2; //; napply cast_nn_i; // |
---|
327 | ##| ##4,5,6: napply sig_bind_OK; #u;#_;#H; napply cast_nn_i; //; |
---|
328 | ##| napply sig_bind_OK; #u;#_;#H; napply sig_bind_OK; #u';#_;#H'; |
---|
329 | napply cast_nn_p; // |
---|
330 | ##] nqed. |
---|
331 | |
---|
332 | (* To make the evaluation of bare lvalue expressions invoke exec_lvalue with |
---|
333 | a structurally smaller value, we break out the surrounding Expr constructor |
---|
334 | and use exec_lvalue'. *) |
---|
335 | |
---|
336 | nlet rec exec_expr (ge:genv) (en:env) (m:mem) (e:expr) on e : res (Σr:val. eval_expr ge en m e r) ≝ |
---|
337 | match e with |
---|
338 | [ Expr e' ty ⇒ |
---|
339 | match e' with |
---|
340 | [ Econst_int i ⇒ Some ? (OK ? (Vint i)) |
---|
341 | | Econst_float f ⇒ Some ? (OK ? (Vfloat f)) |
---|
342 | | Evar _ ⇒ Some ? ( |
---|
343 | 〈loc, ofs〉 ← exec_lvalue' ge en m e' ty;: |
---|
344 | opt_to_res ? (load_value_of_type ty m loc ofs)) |
---|
345 | | Ederef _ ⇒ Some ? ( |
---|
346 | 〈loc, ofs〉 ← exec_lvalue' ge en m e' ty;: |
---|
347 | opt_to_res ? (load_value_of_type ty m loc ofs)) |
---|
348 | | Efield _ _ ⇒ Some ? ( |
---|
349 | 〈loc, ofs〉 ← exec_lvalue' ge en m e' ty;: |
---|
350 | opt_to_res ? (load_value_of_type ty m loc ofs)) |
---|
351 | | Eaddrof a ⇒ Some ? ( |
---|
352 | 〈loc, ofs〉 ← exec_lvalue ge en m a;: |
---|
353 | OK ? (Vptr loc ofs)) |
---|
354 | | Esizeof ty' ⇒ Some ? (OK ? (Vint (repr (sizeof ty')))) |
---|
355 | | Eunop op a ⇒ Some ? ( |
---|
356 | v1 ← exec_expr ge en m a;: |
---|
357 | opt_to_res ? (sem_unary_operation op v1 (typeof a))) |
---|
358 | | Ebinop op a1 a2 ⇒ Some ? ( |
---|
359 | v1 ← exec_expr ge en m a1;: |
---|
360 | v2 ← exec_expr ge en m a2;: |
---|
361 | opt_to_res ? (sem_binary_operation op v1 (typeof a1) v2 (typeof a2) m)) |
---|
362 | | Econdition a1 a2 a3 ⇒ Some ? ( |
---|
363 | v ← exec_expr ge en m a1;: |
---|
364 | b ← bool_of_val_3 v (typeof a1);: |
---|
365 | match b return λ_.res val with [ true ⇒ (exec_expr ge en m a2) | false ⇒ (exec_expr ge en m a3) ]) |
---|
366 | (* if b then exec_expr ge en m a2 else exec_expr ge en m a3)*) |
---|
367 | | Eorbool a1 a2 ⇒ Some ? ( |
---|
368 | v1 ← exec_expr ge en m a1;: |
---|
369 | b1 ← bool_of_val_3 v1 (typeof a1);: |
---|
370 | match b1 return λ_.res val with [ true ⇒ OK ? Vtrue | false ⇒ |
---|
371 | v2 ← exec_expr ge en m a2;: |
---|
372 | b2 ← bool_of_val_3 v2 (typeof a2);: |
---|
373 | OK ? (of_bool b2) ]) |
---|
374 | | Eandbool a1 a2 ⇒ Some ? ( |
---|
375 | v1 ← exec_expr ge en m a1;: |
---|
376 | b1 ← bool_of_val_3 v1 (typeof a1);: |
---|
377 | match b1 return λ_.res val with [ true ⇒ |
---|
378 | v2 ← exec_expr ge en m a2;: |
---|
379 | b2 ← bool_of_val_3 v2 (typeof a2);: |
---|
380 | OK ? (of_bool b2) |
---|
381 | | false ⇒ OK ? Vfalse ]) |
---|
382 | | Ecast ty' a ⇒ Some ? ( |
---|
383 | v ← exec_expr ge en m a;: |
---|
384 | exec_cast v (typeof a) ty') |
---|
385 | ] |
---|
386 | ] |
---|
387 | and exec_lvalue' (ge:genv) (en:env) (m:mem) (e':expr_descr) (ty:type) on e' : res (Σr:block × int. eval_lvalue ge en m (Expr e' ty) (\fst r) (\snd r)) ≝ |
---|
388 | match e' with |
---|
389 | [ Evar id ⇒ |
---|
390 | match (get … id en) with |
---|
391 | [ None ⇒ Some ? (l ← opt_to_res ? (find_symbol ? ? ge id);: OK ? 〈l,zero〉) (* global *) |
---|
392 | | Some l ⇒ Some ? (OK ? 〈l,zero〉) (* local *) |
---|
393 | ] |
---|
394 | | Ederef a ⇒ Some ? ( |
---|
395 | v ← exec_expr ge en m a;: |
---|
396 | match v with |
---|
397 | [ Vptr l ofs ⇒ OK ? 〈l,ofs〉 |
---|
398 | | _ ⇒ Error ? |
---|
399 | ]) |
---|
400 | | Efield a i ⇒ |
---|
401 | match (typeof a) with |
---|
402 | [ Tstruct id fList ⇒ Some ? ( |
---|
403 | 〈l,ofs〉 ← exec_lvalue ge en m a;: |
---|
404 | delta ← field_offset i fList;: |
---|
405 | OK ? 〈l,add ofs (repr delta)〉) |
---|
406 | | Tunion id fList ⇒ Some ? ( |
---|
407 | 〈l,ofs〉 ← exec_lvalue ge en m a;: |
---|
408 | OK ? 〈l,ofs〉) |
---|
409 | | _ ⇒ Some ? (Error ?) |
---|
410 | ] |
---|
411 | | _ ⇒ Some ? (Error ?) |
---|
412 | ] |
---|
413 | and exec_lvalue (ge:genv) (en:env) (m:mem) (e:expr) on e : res (Σr:block × int. eval_lvalue ge en m e (\fst r) (\snd r)) ≝ |
---|
414 | match e with [ Expr e' ty ⇒ exec_lvalue' ge en m e' ty ]. |
---|
415 | nwhd; //; |
---|
416 | ##[ napply sig_bind2_OK; nrewrite > c4; #loc ofs H; |
---|
417 | napply opt_OK; #v ev; /2/; |
---|
418 | ##| napply sig_bind2_OK; nrewrite > c4; #loc ofs H; |
---|
419 | napply opt_OK; #v ev; /2/; |
---|
420 | ##| napply sig_bind2_OK; #loc ofs H; |
---|
421 | nwhd; napply eval_Eaddrof; //; |
---|
422 | ##| napply sig_bind_OK; #v1 ev1 Hv1; |
---|
423 | napply opt_OK; #v ev; |
---|
424 | napply (eval_Eunop … Hv1 ev); |
---|
425 | ##| napply sig_bind_OK; #v1 ev1 Hv1; |
---|
426 | napply sig_bind_OK; #v2 ev2 Hv2; |
---|
427 | napply opt_OK; #v ev; |
---|
428 | napply (eval_Ebinop … Hv1 Hv2 ev); |
---|
429 | ##| napply sig_bind_OK; #v ev Hv; |
---|
430 | napply sig_bind_OK; #v' ev' Hv'; |
---|
431 | napply (eval_Ecast … Hv Hv'); |
---|
432 | ##| napply sig_bind_OK; #vb evb Hvb; |
---|
433 | napply sig_bind_OK; #b; |
---|
434 | ncases b; #eb Hb; napply reinject; #v ev Hv; |
---|
435 | ##[ napply (eval_Econdition_true … Hvb ? Hv); napply (bool_of ??? Hb); |
---|
436 | ##| napply (eval_Econdition_false … Hvb ? Hv); napply (bool_of ??? Hb); |
---|
437 | ##] |
---|
438 | ##| napply sig_bind_OK; #v1 ev1 Hv1; |
---|
439 | napply sig_bind_OK; #b1; ncases b1; #eb1 Hb1; |
---|
440 | ##[ napply sig_bind_OK; #v2 ev2 Hv2; |
---|
441 | napply sig_bind_OK; #b2 eb2 Hb2; |
---|
442 | napply (eval_Eandbool_2 … Hv1 … Hv2); |
---|
443 | ##[ napply (bool_of … Hb1); ##| napply Hb2; ##] |
---|
444 | ##| napply (eval_Eandbool_1 … Hv1); napply (bool_of … Hb1); |
---|
445 | ##] |
---|
446 | ##| napply sig_bind_OK; #v1 ev1 Hv1; |
---|
447 | napply sig_bind_OK; #b1; ncases b1; #eb1 Hb1; |
---|
448 | ##[ napply (eval_Eorbool_1 … Hv1); napply (bool_of … Hb1); |
---|
449 | ##| napply sig_bind_OK; #v2 ev2 Hv2; |
---|
450 | napply sig_bind_OK; #b2 eb2 Hb2; |
---|
451 | napply (eval_Eorbool_2 … Hv1 … Hv2); |
---|
452 | ##[ napply (bool_of … Hb1); ##| napply Hb2; ##] |
---|
453 | ##] |
---|
454 | ##| napply sig_bind2_OK; nrewrite > c5; #l ofs H; |
---|
455 | napply opt_OK; #v ev; /2/; |
---|
456 | ##| napply opt_bind_OK; #l el; napply eval_Evar_global; /2/; |
---|
457 | ##| napply eval_Evar_local; /2/ |
---|
458 | ##| napply sig_bind_OK; #v; ncases v; //; #l ofs ev Hv; nwhd; |
---|
459 | napply eval_Ederef; // |
---|
460 | ##| napply sig_bind2_OK; #l ofs H; |
---|
461 | napply bind_OK; #delta Hdelta; |
---|
462 | napply (eval_Efield_struct … H c5 Hdelta); |
---|
463 | ##| napply sig_bind2_OK; #l ofs H; |
---|
464 | napply (eval_Efield_union … H c5); |
---|
465 | ##] nqed. |
---|
466 | |
---|
467 | (* TODO: Can we do this sensibly with a map combinator? *) |
---|
468 | nlet rec exec_exprlist (ge:genv) (e:env) (m:mem) (l:list expr) on l : res (Σvl:list val. eval_exprlist ge e m l vl) ≝ |
---|
469 | match l with |
---|
470 | [ nil ⇒ Some ? (OK ? (nil val)) |
---|
471 | | cons e1 es ⇒ Some ? ( |
---|
472 | v ← exec_expr ge e m e1;: |
---|
473 | vs ← exec_exprlist ge e m es;: |
---|
474 | OK ? (cons val v vs)) |
---|
475 | ]. nwhd; //; |
---|
476 | napply sig_bind_OK; #v ev Hv; |
---|
477 | napply sig_bind_OK; #vs evs Hvs; |
---|
478 | nnormalize; /2/; |
---|
479 | nqed. |
---|
480 | |
---|
481 | (* Don't really want to use subset rather than sigma here, but can't be bothered |
---|
482 | with *another* set of coercions. XXX: why do I have to get the recursive |
---|
483 | call's property manually? *) |
---|
484 | |
---|
485 | nlet rec exec_alloc_variables (en:env) (m:mem) (l:list (ident × type)) on l : { r:env × mem | alloc_variables en m l (\fst r) (\snd r) } ≝ |
---|
486 | match l with |
---|
487 | [ nil ⇒ Some ? 〈en, m〉 |
---|
488 | | cons h vars ⇒ |
---|
489 | match h with [ mk_pair id ty ⇒ |
---|
490 | match alloc m 0 (sizeof ty) with [ mk_pair m1 b1 ⇒ |
---|
491 | match exec_alloc_variables (set … id b1 en) m1 vars with |
---|
492 | [ sig_intro r p ⇒ r ] |
---|
493 | ]]]. nwhd; //; |
---|
494 | nelim (exec_alloc_variables (set ident ? block c3 c7 en) c6 c1); |
---|
495 | #H; nelim H; //; #H0; nelim H0; nnormalize; #en' m' IH; |
---|
496 | napply (alloc_variables_cons … IH); /2/; |
---|
497 | nqed. |
---|
498 | |
---|
499 | (* TODO: can we establish that length params = length vs in advance? *) |
---|
500 | nlet rec exec_bind_parameters (e:env) (m:mem) (params:list (ident × type)) (vs:list val) on params : res (Σm2:mem. bind_parameters e m params vs m2) ≝ |
---|
501 | match params with |
---|
502 | [ nil ⇒ match vs with [ nil ⇒ Some ? (OK ? m) | cons _ _ ⇒ Some ? (Error ?) ] |
---|
503 | | cons idty params' ⇒ match idty with [ mk_pair id ty ⇒ |
---|
504 | match vs with |
---|
505 | [ nil ⇒ Some ? (Error ?) |
---|
506 | | cons v1 vl ⇒ Some ? ( |
---|
507 | b ← opt_to_res ? (get … id e);: |
---|
508 | m1 ← opt_to_res ? (store_value_of_type ty m b zero v1);: |
---|
509 | err_eject ?? (exec_bind_parameters e m1 params' vl)) (* FIXME: don't want to have to eject here *) |
---|
510 | ] |
---|
511 | ] ]. |
---|
512 | nwhd; //; |
---|
513 | napply opt_bind_OK; #b eb; |
---|
514 | napply opt_bind_OK; #m1 em1; |
---|
515 | napply reinject; #m2 em2 Hm2; |
---|
516 | napply (bind_parameters_cons … eb em1 Hm2); |
---|
517 | nqed. |
---|
518 | |
---|
519 | ndefinition is_not_void : ∀t:type. res (Σu:unit. t ≠ Tvoid) ≝ |
---|
520 | λt. match t with |
---|
521 | [ Tvoid ⇒ Some ? (Error ?) |
---|
522 | | _ ⇒ Some ? (OK ??) |
---|
523 | ]. nwhd; //; @; #H; ndestruct; nqed. |
---|
524 | |
---|
525 | ninductive decide : Type ≝ |
---|
526 | | dy : decide | dn : decide. |
---|
527 | |
---|
528 | ndefinition dodecide : ∀P:Prop.∀d.∀p:(match d with [ dy ⇒ P | dn ⇒ ¬P ]).P + ¬P. |
---|
529 | #P d;ncases d;/2/; nqed. |
---|
530 | |
---|
531 | ncoercion decide_inject : |
---|
532 | ∀P:Prop.∀d.∀p:(match d with [ dy ⇒ P | dn ⇒ ¬P ]).P + ¬P ≝ dodecide |
---|
533 | on d:decide to ? + (¬?). |
---|
534 | |
---|
535 | ndefinition dodecide2 : ∀P:Prop.∀d.∀p:(match d with [ dy ⇒ P | dn ⇒ True ]).res P. |
---|
536 | #P d; ncases d; nnormalize; #p; ##[ napply (OK ? p); ##| napply Error ##] nqed. |
---|
537 | |
---|
538 | ncoercion decide_inject2 : |
---|
539 | ∀P:Prop.∀d.∀p:(match d with [ dy ⇒ P | dn ⇒ True ]).res P ≝ dodecide2 |
---|
540 | on d:decide to res ?. |
---|
541 | |
---|
542 | alias id "Tint" = "cic:/matita/c-semantics/Csyntax/type.con(0,2,0)". |
---|
543 | alias id "Tfloat" = "cic:/matita/c-semantics/Csyntax/type.con(0,3,0)". |
---|
544 | ndefinition sz_eq_dec : ∀s1,s2:intsize. (s1 = s2) + (s1 ≠ s2). |
---|
545 | #s1; ncases s1; #s2; ncases s2; /2/; @2; @; #H; ndestruct; nqed. |
---|
546 | ndefinition sg_eq_dec : ∀s1,s2:signedness. (s1 = s2) + (s1 ≠ s2). |
---|
547 | #s1; ncases s1; #s2; ncases s2; /2/; @2; @; #H; ndestruct; nqed. |
---|
548 | ndefinition fs_eq_dec : ∀s1,s2:floatsize. (s1 = s2) + (s1 ≠ s2). |
---|
549 | #s1; ncases s1; #s2; ncases s2; /2/; @2; @; #H; ndestruct; nqed. |
---|
550 | |
---|
551 | nlet rec assert_type_eq (t1,t2:type) : res (t1 = t2) ≝ |
---|
552 | match t1 with |
---|
553 | [ Tvoid ⇒ match t2 with [ Tvoid ⇒ dy | _ ⇒ dn ] |
---|
554 | | Tint sz sg ⇒ match t2 with [ Tint sz' sg' ⇒ match sz_eq_dec sz sz' with [ inl _ ⇒ match sg_eq_dec sg sg' with [ inl _ ⇒ dy | _ ⇒ dn ] | _ ⇒ dn ] | _ ⇒ dn ] |
---|
555 | | Tfloat f ⇒ match t2 with [ Tfloat f' ⇒ match fs_eq_dec f f' with [ inl _ ⇒ dy | _ ⇒ dn ] | _ ⇒ dn ] |
---|
556 | | Tpointer t ⇒ match t2 with [ Tpointer t' ⇒ match assert_type_eq t t' with [ OK _ ⇒ dy | _ ⇒ dn ] | _ ⇒ dn ] |
---|
557 | | Tarray t n ⇒ match t2 with [ Tarray t' n' ⇒ |
---|
558 | match assert_type_eq t t' with [ OK _ ⇒ |
---|
559 | match decidable_eq_Z_Type n n' with [ inl _ ⇒ dy | inr _ ⇒ dn ] | _ ⇒ dn ] | _ ⇒ dn ] |
---|
560 | | Tfunction tl t ⇒ match t2 with [ Tfunction tl' t' ⇒ match assert_typelist_eq tl tl' with [ OK _ ⇒ |
---|
561 | match assert_type_eq t t' with [ OK _ ⇒ dy | _ ⇒ dn ] | _ ⇒ dn ] | _ ⇒ dn ] |
---|
562 | | Tstruct i fl ⇒ |
---|
563 | match t2 with [ Tstruct i' fl' ⇒ match ident_eq i i' with [ inl _ ⇒ |
---|
564 | match assert_fieldlist_eq fl fl' with [ OK _ ⇒ dy | _ ⇒ dn ] | inr _ ⇒ dn ] | _ ⇒ dn ] |
---|
565 | | Tunion i fl ⇒ |
---|
566 | match t2 with [ Tunion i' fl' ⇒ match ident_eq i i' with [ inl _ ⇒ |
---|
567 | match assert_fieldlist_eq fl fl' with [ OK _ ⇒ dy | _ ⇒ dn ] | _ ⇒ dn ] | _ ⇒ dn ] |
---|
568 | | Tcomp_ptr i ⇒ match t2 with [ Tcomp_ptr i' ⇒ match ident_eq i i' with [ inl _ ⇒ dy | inr _ ⇒ dn ] | _ ⇒ dn ] |
---|
569 | ] |
---|
570 | and assert_typelist_eq (tl1,tl2:typelist) : res (tl1 = tl2) ≝ |
---|
571 | match tl1 with |
---|
572 | [ Tnil ⇒ match tl2 with [ Tnil ⇒ dy | _ ⇒ dn ] |
---|
573 | | Tcons t1 ts1 ⇒ match tl2 with [ Tnil ⇒ dn | Tcons t2 ts2 ⇒ |
---|
574 | match assert_type_eq t1 t2 with [ OK _ ⇒ |
---|
575 | match assert_typelist_eq ts1 ts2 with [ OK _ ⇒ dy | _ ⇒ dn ] | _ ⇒ dn ] ] |
---|
576 | ] |
---|
577 | and assert_fieldlist_eq (fl1,fl2:fieldlist) : res (fl1 = fl2) ≝ |
---|
578 | match fl1 with |
---|
579 | [ Fnil ⇒ match fl2 with [ Fnil ⇒ dy | _ ⇒ dn ] |
---|
580 | | Fcons i1 t1 fs1 ⇒ match fl2 with [ Fnil ⇒ dn | Fcons i2 t2 fs2 ⇒ |
---|
581 | match ident_eq i1 i2 with [ inl _ ⇒ |
---|
582 | match assert_type_eq t1 t2 with [ OK _ ⇒ |
---|
583 | match assert_fieldlist_eq fs1 fs2 with [ OK _ ⇒ dy | _ ⇒ dn ] |
---|
584 | | _ ⇒ dn ] | _ ⇒ dn ] ] |
---|
585 | ]. |
---|
586 | (* A poor man's clear, otherwise automation picks up recursive calls without |
---|
587 | checking that the argument is smaller. *) |
---|
588 | ngeneralize in assert_type_eq; |
---|
589 | ngeneralize in assert_typelist_eq; |
---|
590 | ngeneralize in assert_fieldlist_eq; #avoid1; #_; #avoid2; #_; #avoid3; #_; nwhd; //; |
---|
591 | (* XXX: I have no idea why the first // didn't catch these. *) |
---|
592 | //; //; //; //; //; //; //; //; //; |
---|
593 | nqed. |
---|
594 | |
---|
595 | nlet rec is_is_call_cont (k:cont) : (is_call_cont k) + (¬is_call_cont k) ≝ |
---|
596 | match k with |
---|
597 | [ Kstop ⇒ dy |
---|
598 | | Kcall _ _ _ _ ⇒ dy |
---|
599 | | _ ⇒ dn |
---|
600 | ]. nwhd; //; @; #H; nelim H; nqed. |
---|
601 | |
---|
602 | nlet rec is_Sskip (s:statement) : (s = Sskip) + (s ≠ Sskip) ≝ |
---|
603 | match s with |
---|
604 | [ Sskip ⇒ dy |
---|
605 | | _ ⇒ dn |
---|
606 | ]. |
---|
607 | ##[ //; |
---|
608 | ##| ##*: @; #H; ndestruct; |
---|
609 | ##] nqed. |
---|
610 | |
---|
611 | nlet rec exec_step (ge:genv) (st:state) on st : res (Σr:trace × state. step ge st (\fst r) (\snd r)) ≝ |
---|
612 | match st with |
---|
613 | [ State f s k e m ⇒ |
---|
614 | match s with |
---|
615 | [ Sassign a1 a2 ⇒ Some ? ( |
---|
616 | 〈loc, ofs〉 ← exec_lvalue ge e m a1;: |
---|
617 | v2 ← exec_expr ge e m a2;: |
---|
618 | m' ← opt_to_res ? (store_value_of_type (typeof a1) m loc ofs v2);: |
---|
619 | OK ? 〈E0, State f Sskip k e m'〉) |
---|
620 | | Scall lhs a al ⇒ Some ? ( |
---|
621 | vf ← exec_expr ge e m a;: |
---|
622 | vargs ← exec_exprlist ge e m al;: |
---|
623 | fd ← opt_to_res ? (find_funct ? ? ge vf);: |
---|
624 | p ← assert_type_eq (type_of_fundef fd) (typeof a);: |
---|
625 | k' ← match lhs with |
---|
626 | [ None ⇒ OK ? (Kcall (None ?) f e k) |
---|
627 | | Some lhs' ⇒ |
---|
628 | locofs ← exec_lvalue ge e m lhs';: |
---|
629 | OK ? (Kcall (Some ? 〈sig_eject ?? locofs, typeof lhs'〉) f e k) |
---|
630 | ];: |
---|
631 | OK ? 〈E0, Callstate fd vargs k' m〉) |
---|
632 | | Ssequence s1 s2 ⇒ Some ? (OK ? 〈E0, State f s1 (Kseq s2 k) e m〉) |
---|
633 | | Sskip ⇒ |
---|
634 | match k with |
---|
635 | [ Kseq s k' ⇒ Some ? (OK ? 〈E0, State f s k' e m〉) |
---|
636 | | Kstop ⇒ |
---|
637 | match fn_return f with |
---|
638 | [ Tvoid ⇒ Some ? (OK ? 〈E0, Returnstate Vundef k (free_list m (blocks_of_env e))〉) |
---|
639 | | _ ⇒ Some ? (Error ?) |
---|
640 | ] |
---|
641 | | Kcall _ _ _ _ ⇒ |
---|
642 | match fn_return f with |
---|
643 | [ Tvoid ⇒ Some ? (OK ? 〈E0, Returnstate Vundef k (free_list m (blocks_of_env e))〉) |
---|
644 | | _ ⇒ Some ? (Error ?) |
---|
645 | ] |
---|
646 | | Kwhile a s' k' ⇒ Some ? (OK ? 〈E0, State f (Swhile a s') k' e m〉) |
---|
647 | | Kdowhile a s' k' ⇒ Some ? ( |
---|
648 | v ← exec_expr ge e m a;: |
---|
649 | b ← bool_of_val_3 v (typeof a);: |
---|
650 | match b with |
---|
651 | [ true ⇒ OK ? 〈E0, State f (Sdowhile a s') k' e m〉 |
---|
652 | | false ⇒ OK ? 〈E0, State f Sskip k' e m〉 |
---|
653 | ]) |
---|
654 | | Kfor2 a2 a3 s' k' ⇒ Some ? (OK ? 〈E0, State f a3 (Kfor3 a2 a3 s' k') e m〉) |
---|
655 | | Kfor3 a2 a3 s' k' ⇒ Some ? (OK ? 〈E0, State f (Sfor Sskip a2 a3 s') k' e m〉) |
---|
656 | | Kswitch k' ⇒ Some ? (OK ? 〈E0, State f Sskip k' e m〉) |
---|
657 | | _ ⇒ Some ? (Error ?) |
---|
658 | ] |
---|
659 | | Scontinue ⇒ |
---|
660 | match k with |
---|
661 | [ Kseq s' k' ⇒ Some ? (OK ? 〈E0, State f Scontinue k' e m〉) |
---|
662 | | Kwhile a s' k' ⇒ Some ? (OK ? 〈E0, State f (Swhile a s') k' e m〉) |
---|
663 | | Kdowhile a s' k' ⇒ Some ? ( |
---|
664 | v ← exec_expr ge e m a;: |
---|
665 | b ← bool_of_val_3 v (typeof a);: |
---|
666 | match b with |
---|
667 | [ true ⇒ OK ? 〈E0, State f (Sdowhile a s') k' e m〉 |
---|
668 | | false ⇒ OK ? 〈E0, State f Sskip k' e m〉 |
---|
669 | ]) |
---|
670 | | Kfor2 a2 a3 s' k' ⇒ Some ? (OK ? 〈E0, State f a3 (Kfor3 a2 a3 s' k') e m〉) |
---|
671 | | Kswitch k' ⇒ Some ? (OK ? 〈E0, State f Scontinue k' e m〉) |
---|
672 | | _ ⇒ Some ? (Error ?) |
---|
673 | ] |
---|
674 | | Sbreak ⇒ |
---|
675 | match k with |
---|
676 | [ Kseq s' k' ⇒ Some ? (OK ? 〈E0, State f Sbreak k' e m〉) |
---|
677 | | Kwhile a s' k' ⇒ Some ? (OK ? 〈E0, State f Sskip k' e m〉) |
---|
678 | | Kdowhile a s' k' ⇒ Some ? (OK ? 〈E0, State f Sskip k' e m〉) |
---|
679 | | Kfor2 a2 a3 s' k' ⇒ Some ? (OK ? 〈E0, State f Sskip k' e m〉) |
---|
680 | | Kswitch k' ⇒ Some ? (OK ? 〈E0, State f Sskip k' e m〉) |
---|
681 | | _ ⇒ Some ? (Error ?) |
---|
682 | ] |
---|
683 | | Sifthenelse a s1 s2 ⇒ Some ? ( |
---|
684 | v ← exec_expr ge e m a;: |
---|
685 | b ← bool_of_val_3 v (typeof a);: |
---|
686 | OK ? 〈E0, State f (if b then s1 else s2) k e m〉) |
---|
687 | | Swhile a s' ⇒ Some ? ( |
---|
688 | v ← exec_expr ge e m a;: |
---|
689 | b ← bool_of_val_3 v (typeof a);: |
---|
690 | OK ? 〈E0, if b then State f s' (Kwhile a s' k) e m |
---|
691 | else State f Sskip k e m〉) |
---|
692 | | Sdowhile a s' ⇒ Some ? (OK ? 〈E0, State f s' (Kdowhile a s' k) e m〉) |
---|
693 | | Sfor a1 a2 a3 s' ⇒ |
---|
694 | match is_Sskip a1 with |
---|
695 | [ inl _ ⇒ Some ? ( |
---|
696 | v ← exec_expr ge e m a2;: |
---|
697 | b ← bool_of_val_3 v (typeof a2);: |
---|
698 | OK ? 〈E0, State f (if b then s' else Sskip) (if b then (Kfor2 a2 a3 s' k) else k) e m〉) |
---|
699 | | inr _ ⇒ Some ? (OK ? 〈E0, State f a1 (Kseq (Sfor Sskip a2 a3 s') k) e m〉) |
---|
700 | ] |
---|
701 | | Sreturn a_opt ⇒ |
---|
702 | match a_opt with |
---|
703 | [ None ⇒ match fn_return f with |
---|
704 | [ Tvoid ⇒ Some ? (OK ? 〈E0, Returnstate Vundef (call_cont k) (free_list m (blocks_of_env e))〉) |
---|
705 | | _ ⇒ Some ? (Error ?) |
---|
706 | ] |
---|
707 | | Some a ⇒ Some ? ( |
---|
708 | u ← is_not_void (fn_return f);: |
---|
709 | v ← exec_expr ge e m a;: |
---|
710 | OK ? 〈E0, Returnstate v (call_cont k) (free_list m (blocks_of_env e))〉) |
---|
711 | ] |
---|
712 | | Sswitch a sl ⇒ Some ? ( |
---|
713 | v ← exec_expr ge e m a;: |
---|
714 | match v with [ Vint n ⇒ OK ? 〈E0, State f (seq_of_labeled_statement (select_switch n sl)) (Kswitch k) e m〉 |
---|
715 | | _ ⇒ Error ? ]) |
---|
716 | | Slabel lbl s' ⇒ Some ? (OK ? 〈E0, State f s' k e m〉) |
---|
717 | | Sgoto lbl ⇒ |
---|
718 | match find_label lbl (fn_body f) (call_cont k) with |
---|
719 | [ Some sk' ⇒ match sk' with [ mk_pair s' k' ⇒ Some ? (OK ? 〈E0, State f s' k' e m〉) ] |
---|
720 | | None ⇒ Some ? (Error ?) |
---|
721 | ] |
---|
722 | ] |
---|
723 | | Callstate f0 vargs k m ⇒ |
---|
724 | match f0 with |
---|
725 | [ Internal f ⇒ Some ? ( |
---|
726 | match exec_alloc_variables empty_env m ((fn_params f) @ (fn_vars f)) with [ mk_pair e m1 ⇒ |
---|
727 | m2 ← exec_bind_parameters e m1 (fn_params f) vargs;: |
---|
728 | OK ? 〈E0, State f (fn_body f) k e m2〉 |
---|
729 | ]) |
---|
730 | | _ ⇒ Some ? (Error ?) |
---|
731 | ] |
---|
732 | | Returnstate res k m ⇒ |
---|
733 | match k with |
---|
734 | [ Kcall r f e k' ⇒ |
---|
735 | match r with |
---|
736 | [ None ⇒ |
---|
737 | match res with |
---|
738 | [ Vundef ⇒ Some ? (OK ? 〈E0, (State f Sskip k' e m)〉) |
---|
739 | | _ ⇒ Some ? (Error ?) |
---|
740 | ] |
---|
741 | | Some r' ⇒ |
---|
742 | match r' with [ mk_pair locofs ty ⇒ |
---|
743 | match locofs with [ mk_pair loc ofs ⇒ Some ? ( |
---|
744 | m' ← opt_to_res ? (store_value_of_type ty m loc ofs res);: |
---|
745 | OK ? 〈E0, (State f Sskip k' e m')〉) |
---|
746 | ] |
---|
747 | ] |
---|
748 | ] |
---|
749 | | _ ⇒ Some ? (Error ?) |
---|
750 | ] |
---|
751 | ]. nwhd; //; |
---|
752 | ##[ nrewrite > c7; napply step_skip_call; //; napply c8; |
---|
753 | ##| napply step_skip_or_continue_while; @; //; |
---|
754 | ##| napply sig_bind_OK; #v ev Hv; |
---|
755 | napply sig_bind_OK; #b; ncases b; #eb Hb; |
---|
756 | ##[ napply (step_skip_or_continue_dowhile_true … Hv); |
---|
757 | ##[ @; // ##| napply (bool_of … Hb); ##] |
---|
758 | ##| napply (step_skip_or_continue_dowhile_false … Hv); |
---|
759 | ##[ @; // ##| napply (bool_of … Hb); ##] |
---|
760 | ##] |
---|
761 | ##| napply step_skip_or_continue_for2; @; //; |
---|
762 | ##| napply step_skip_break_switch; @; //; |
---|
763 | ##| nrewrite > c11; napply step_skip_call; //; napply c12; |
---|
764 | ##| napply sig_bind2_OK; #loc ofs Hlval; |
---|
765 | napply sig_bind_OK; #v2 ev2 Hv2; |
---|
766 | napply opt_bind_OK; #m' em'; |
---|
767 | nwhd; napply (step_assign … Hlval Hv2 em'); |
---|
768 | ##| napply sig_bind_OK; #vf evf Hvf; |
---|
769 | napply sig_bind_OK; #vargs evargs Hvargs; |
---|
770 | napply opt_bind_OK; #fd efd; |
---|
771 | napply bind_OK; #ety ety'; |
---|
772 | ncases c6; nwhd; |
---|
773 | ##[ napply (step_call_none … Hvf Hvargs efd ety); |
---|
774 | ##| #lhs'; nrewrite > (bind_assoc_r …); |
---|
775 | napply sig_bind_OK; #locofs; ncases locofs; #loc ofs elocofs Hlocofs; |
---|
776 | nwhd; napply (step_call_some … Hlocofs Hvf Hvargs efd ety); |
---|
777 | ##] |
---|
778 | ##| napply sig_bind_OK; #v ev Hv; |
---|
779 | napply sig_bind_OK; #b; ncases b; #eb Hb; |
---|
780 | ##[ napply (step_ifthenelse_true … Hv); napply (bool_of … Hb); |
---|
781 | ##| napply (step_ifthenelse_false … Hv); napply (bool_of … Hb) |
---|
782 | ##] |
---|
783 | ##| napply sig_bind_OK; #v ev Hv; |
---|
784 | napply sig_bind_OK; #b; ncases b; #eb Hb; |
---|
785 | ##[ napply (step_while_true … Hv); napply (bool_of … Hb); |
---|
786 | ##| napply (step_while_false … Hv); napply (bool_of … Hb); |
---|
787 | ##] |
---|
788 | ##| nrewrite > c11; |
---|
789 | napply sig_bind_OK; #v ev Hv; |
---|
790 | napply sig_bind_OK; #b; ncases b; #eb Hb; |
---|
791 | ##[ napply (step_for_true … Hv); napply (bool_of … Hb); |
---|
792 | ##| napply (step_for_false … Hv); napply (bool_of … Hb); |
---|
793 | ##] |
---|
794 | ##| napply step_for_start; //; |
---|
795 | ##| napply step_skip_break_switch; @2; //; |
---|
796 | ##| napply step_skip_or_continue_while; @2; //; |
---|
797 | ##| napply sig_bind_OK; #v ev Hv; |
---|
798 | napply sig_bind_OK; #b; ncases b; #eb Hb; |
---|
799 | ##[ napply (step_skip_or_continue_dowhile_true … Hv); |
---|
800 | ##[ @2; // ##| napply (bool_of … Hb); ##] |
---|
801 | ##| napply (step_skip_or_continue_dowhile_false … Hv); |
---|
802 | ##[ @2; // ##| napply (bool_of … Hb); ##] |
---|
803 | ##] |
---|
804 | ##| napply step_skip_or_continue_for2; @2; // |
---|
805 | ##| napply step_return_0; napply c9; |
---|
806 | ##| napply sig_bind_OK; #u eu Hnotvoid; |
---|
807 | napply sig_bind_OK; #v ev Hv; |
---|
808 | nwhd; napply (step_return_1 … Hnotvoid Hv); |
---|
809 | ##| napply sig_bind_OK; #v; ncases v; //; #n ev Hv; |
---|
810 | napply step_switch; //; |
---|
811 | ##| napply step_goto; nrewrite < c12; napply c9; |
---|
812 | ##| napply extract_subset_pair; #e m1 ealloc Halloc; |
---|
813 | napply sig_bind_OK; #m2 em1 Hbind; |
---|
814 | nwhd; napply (step_internal_function … Halloc Hbind); |
---|
815 | ##| napply opt_bind_OK; #m' em'; napply step_returnstate_1; //; |
---|
816 | ##] |
---|
817 | nqed. |
---|
818 | |
---|
819 | nlet rec make_initial_state (p:program) : res (Σs:state. initial_state p s) ≝ |
---|
820 | let ge ≝ globalenv Genv ?? p in |
---|
821 | let m0 ≝ init_mem Genv ?? p in |
---|
822 | Some ? ( |
---|
823 | b ← opt_to_res ? (find_symbol ? ? ge (prog_main ?? p));: |
---|
824 | f ← opt_to_res ? (find_funct_ptr ? ? ge b);: |
---|
825 | OK ? (Callstate f (nil ?) Kstop m0)). |
---|
826 | nwhd; |
---|
827 | napply opt_bind_OK; #b eb; |
---|
828 | napply opt_bind_OK; #f ef; |
---|
829 | nwhd; napply (initial_state_intro … eb ef); |
---|
830 | nqed. |
---|
831 | |
---|
832 | ndefinition is_final_state : ∀st:state. (∃r. final_state st r) + (¬∃r. final_state st r). |
---|
833 | #st; nelim st; |
---|
834 | ##[ #f s k e m; @2; @;*; #r H; ninversion H; #i m e; ndestruct; |
---|
835 | ##| #f l k m; @2; @;*; #r H; ninversion H; #i m e; ndestruct; |
---|
836 | ##| #v k m; ncases k; |
---|
837 | ##[ ncases v; |
---|
838 | ##[ ##2: #i; @1; @ i; //; |
---|
839 | ##| ##1: @2; @; *; #r H; ninversion H; #i m e; ndestruct; |
---|
840 | ##| #f; @2; @; *; #r H; ninversion H; #i m e; ndestruct; |
---|
841 | ##| #b of; @2; @; *; #r H; ninversion H; #i m e; ndestruct; |
---|
842 | ##] |
---|
843 | ##| #a b; @2; @; *; #r H; ninversion H; #i m e; ndestruct; |
---|
844 | ##| ##3,4: #a b c; @2; @; *; #r H; ninversion H; #i m e; ndestruct; |
---|
845 | ##| ##5,6,8: #a b c d; @2; @; *; #r H; ninversion H; #i m e; ndestruct; |
---|
846 | ##| #a; @2; @; *; #r H; ninversion H; #i m e; ndestruct; |
---|
847 | ##] |
---|
848 | ##] nqed. |
---|
849 | |
---|
850 | nlet rec exec_steps (n:nat) (ge:genv) (s:state) : |
---|
851 | res (Σts:trace×state. star (mk_transrel ?? step) ge s (\fst ts) (\snd ts)) ≝ |
---|
852 | match is_final_state s with |
---|
853 | [ inl _ ⇒ Some ? (OK ? 〈E0, s〉) |
---|
854 | | inr _ ⇒ |
---|
855 | match n with |
---|
856 | [ O ⇒ Some ? (OK ? 〈E0, s〉) |
---|
857 | | S n' ⇒ Some ? ( |
---|
858 | 〈t,s'〉 ← exec_step ge s;: |
---|
859 | 〈t',s''〉 ← exec_steps n' ge s';: |
---|
860 | OK ? 〈t ⧺ t',s''〉) |
---|
861 | ] |
---|
862 | ]. nwhd; /2/; |
---|
863 | napply sig_bind2_OK; #t s' H1; |
---|
864 | napply sig_bind2_OK; #t' s'' IH; |
---|
865 | nwhd; napply (star_step … IH); //; |
---|
866 | nqed. |
---|
867 | |
---|
868 | nlet rec exec_steps_without_proof (n:nat) (ge:genv) (s:state) : |
---|
869 | res (trace×state) ≝ |
---|
870 | match is_final_state s with |
---|
871 | [ inl _ ⇒ OK ? 〈E0, s〉 |
---|
872 | | inr _ ⇒ |
---|
873 | match n with |
---|
874 | [ O ⇒ OK ? 〈E0, s〉 |
---|
875 | | S n' ⇒ |
---|
876 | 〈t,s'〉 ← exec_step ge s;: |
---|
877 | 〈t',s''〉 ← exec_steps_without_proof n' ge s';: |
---|
878 | OK ? 〈t ⧺ t',s''〉 |
---|
879 | ] |
---|
880 | ]. |
---|